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Abstract 
 

In recent decades, the sonic capabilities of digital musical instruments have 

significantly increased and today musicians confront a very high dimensional control 

space for interacting with these complex devices. The exploitation of the musical 

potential represents a significant challenge, as can be appreciated by surveying the 

proliferation of novel interfaces and techniques to map the performer gesture to 

instrument controls. Body gesture and in particular hand interaction have intrinsic 

limits on the number of instrument parameters that can be controlled simultaneously. 

This thesis proposes an approach in which gestures derived from the vocal timbre are 

used to extend common musical interfaces, providing an additional control layer for 

any sound synthesis or processing device. 

The use of human voice as input modality for musical purposes has been 

proposed in the past, but it is yet under-exploited. Previous research has succeeded 

only in certain scenarios or with specific instruments. Existing methods for mapping 

voice to instrument are too specialized to be broadly utilized, while generative 

mapping techniques present limitations in adopting voice as the gesture, and may 

require complicated training procedures. This research investigates the musical 

control potential in the human voice and explores novel mapping approaches, within 

the real-time, low latency and reliability constraints of generic musical interfaces. 

The high variabilities across digital musical instrument characteristics, user vocal 

timbres and interaction preferences are open challenges addressed here. 

The main contribution of this thesis is a generic and adaptive method to map the 

voice to digital musical instruments, based on several real-time signal processing and 

off-line machine learning algorithms for producing and using maps between 

heterogeneous spaces, with the aim of maximizing the interface expressivity and 

minimizing the user intervention in the system setup. This comprises a technique to 

extract robust, continuous and multidimensional gestural data from specific 

performer’s voice, optimizing the computation towards noise minimization and 

gesture accentuation; a gestural controller based on a novel application and training 

of self- organizing map technique; a framework to model analytically the relationship 

between the variation of instrument parameters and the perceptual sonic changes in 

any deterministic sound synthesis or processing device; a strategy to minimize the 

dimensionality of instruments control space retrieving discontinuity-free parameters 

from a reduced sound map; and a dual-layer generative mapping strategy to transform 

gestures in the vocal space into trajectories in the instrument sonic space, which 
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confers linear perceptual response and topological coherence, while maximizing the 

breadth of explorable sonic space over a set of instrumental parameters. 

This dissertation also presents a study involving expert musicians in training, 

exploring and performing with an open-source proof-of-concept prototype of the 

voice-controlled interface for digital musical instruments. The study provides an 

additional validation of the proposed method and it includes participants’ vision 

about application, improvement and benefit from the system in different contexts. 

The software system embodying the techniques described in this thesis provides 

a novel end-to-end solution to implement ad hoc vocal interfaces, engendering new 

paradigms in musical performances that better exploit creativity and virtuosity. 

Furthermore the modular design of the system and the self-contained contributions 

are beneficial and relevant in the broader contexts of sound and music computing as 

well as human-computer interaction. 
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Chapter 1  
 

Introduction 
 

 

“For keyboard players who need an extra hand. If you’re like most keyboard 

performers, you’ve got your hands full – but you still want more sound. The 

new ARP Sequencer adds rich new textures to your music while it frees both 

hands for playing keyboards.” 

– ARP Instruments Inc. (ARP Instruments, 1976) 

 

“I wish I had more hands so I could do more.” 

– Hans-Peter Lindstørm (Lindstrøm, 2007) 

 

1.1 Motivation 

Since their introduction, electronic or Digital Musical Instruments (DMI) presented 

an expansive potential that had empowered musicians with novel sonic and 

performing resources, beyond all the limits of the traditional acoustic instruments. 

One of the key features of DMI is the physical independence of the sound generation 

component from the interface, regardless of the specific synthesis technique and the 

user input modality. The player mechanical energy does not excite directly any 

instrument’s resonant body, but it is converted into electric control signals for 

powered analog or digital circuitry, which generates an electric wave transduced to 

sound by loudspeakers. 

Improving the sonic capabilities of synthesis or processing algorithms was the 

prevailing research focus for decades, while interfacing aspects had a minor 

emphasis. Simple buttons, rotary dial, faders or piano-like keyboards were used 

extensively, but these had showed their limitation in providing expressive control 

over modern DMI (Levitin, McAdams, and Adams, 2002), especially in timbre and 

texture manipulation which may expose hundreds of parameters to the user. In the 

twenty-first century, providing effective control strategies to transfer the rich and 

complex sonic potential to performers became a central challenge. It motivated a 

wide spectrum of works on New Interfaces for Musical Expression (NIME), initially 
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considered a branch of Human-Computer Interaction (HCI) (Poupyrev et al., 2001). 

In a few years musical interfaces design gained a significant importance and a 

growing scientific community had successfully brought in concepts from human-

machine interaction, sensors and actuators engineering, computer vision, digital 

signal processing, machine learning, artificial intelligence and robotics. A variety of 

novel interfaces and control strategies have recently emerged, supported by the 

introduction of several hardware and software development tools. These have 

drastically reduced prototyping time and cost, have hidden the engineering burden of 

real-time and low latency design required by musical interface, coming to the point 

where even just a little programming expertise is sufficient to craft customized 

musical instruments. 

Notwithstanding the sensor technology employed, a DMI interface requires some 

sort of a physical motor interaction of the performer, which can be captured with or 

without contact (Bongers, 2000). In the vast majority of the musical controllers 

available today, the interaction exploits performer’s hands in different ways (tactile, 

haptic, gestural). This overlap in the input modality across interfaces determines a 

physical limit that restricts the number of synthesis or processing parameters 

controlled simultaneously by a single performer. Providing musicians with multiple 

interfaces does not usually expand the bandwidth of musical intentions flowing 

toward instruments. A single interface can easily demand all of a performer’s 

interaction capabilities and prevent the parallel use of another control device. In live 

electronics and in electronic/computer music live performances automation strategies, 

where a machine acts as co-player, are often used to cope with this limitation, 

especially when the ratio “performers over instruments” is particularly low. These 

constraints minimize the possibility of improvisation and to a certain extent distort 

the live nature of the performance itself. This issue is rarely addressed since 

considerations about musical interfaces integrations and cooperation are not common 

in the conceptual design phase. It pinions and levels off the virtuosity of certain 

performers, leaving a sense of frustration often expressed in the desire of having extra 

hands to do more. Augmented instrument may represent an exception since they aim 

to saturate any spare bandwidth (Cook, 2001) of a performer engaged with a single 

and specific instrument, placing on it extra physical sensors for additional musical 

control. 

The voice can be considered as spare bandwidth in the vast majority of scenarios 

in which a performer is engaged with one or more musical interface that control 

computer generated music. The voice is our most proficient and prolific means of 

communications, it can be considered also as a musical instrument or as a complex 
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source of controllable sound (Benade, 1990), and the variety of timbres that the vocal 

tract can generate is very broad compared with most acoustic musical instruments. 

The underlying idea in this thesis is the adoption of the performer’s voice as the 

gestural input for a generic DMI interface, and we investigate how and what can be 

mapped between voice and the instrument. We believe that this approach can provide 

an additional layer of musical control, and that it can widen the control limitation of 

common physical interfaces. In order to find applications and provide benefits in the 

largest spectrum of contexts we propose a method which has no constraints in terms 

of voice and instrument characteristics. This carries several challenges that we 

address with a flexible mapping strategy, a self-configured interface, and adoption or 

modification of generic Machine Learning (ML) techniques. 

1.2 Aims and main contributions 

The aim of this thesis is to introduce a generic and adaptive method to extract and 

map gestural characteristics of the human voice to an arbitrary number of DMI 

parameters, meeting the requirements and constraints of musical interfaces such as 

real-time, minimal latency and reliability. The mapping should ideally not depend on 

any prior decision or knowledge about the voice or about the instrument, nor from 

any explicit user specifications, but it should be algorithmically generated starting 

from an automatic study of the DMI parameters-to-sound characteristic, and from an 

unsupervised analysis of the performer vocal attributes. From these aims we 

developed the Voice-Controlled Interface for Digital Musical Instruments 

(VCI4DMI), a system for the implementation of ad hoc vocal interfaces that 

minimizes the user involvement in the system setup, but, at the same time, maximizes 

the breadth of explorable sonic space over a set of instrument real-valued parameters. 

It constitutes an extension to generic interface to effectively perform hands-free 

musical control tasks. The main contributions of this dissertation, which are essential 

parts of the system, are: 

• A procedure that learns how to extract robust and continuous gestural data 

from specific voice examples, representative of the control intention, 

optimizing the computation towards noise minimization and spatial gesture 

accentuation (Chapter 3). 

• A multi dimensional gestural controller based on the output lattice of a self- 

organizing map trained with a modified algorithm that prevents topology 

distortions (Chapter 3). 
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• A framework to model analytically the relationship between an arbitrary 

number of instrument parameters and the perceptual sonic changes in any 

deterministic sound synthesis or processing device (Chapter 4).  

• A method to minimize the dimensionality of the control space of any DMI 

retrieving discontinuity-free parameters from a reduced sound map (Chapter 

4 and Chapter 5).  

• A dual-layer generative strategy to map across heterogeneous spaces, which 

is used to transform gestures in the vocal space into trajectories in the 

instrument sonic space, providing linear perceptual response and topological 

coherence (Chapter 5).  

• An open-source proof-of-concept functional prototype of the VCI4DMI that 

exposes to the end user intermediate settings and mapping options for 

experimenting different system configuration (Chapter 6). 

1.3 Associated publications 

Parts of this dissertation have been published in international conferences 

proceedings and journal articles as listed here. 

• Fasciani, S. and Wyse, L. 2012a. “A voice interface for sound generators: 

adaptive and automatic mapping of gestures to sound”. In Proceedings of the 

12th international conference on New Interfaces for Musical Expression. 

Ann Arbor, US. – The paper presents the adaptive and generative approach to 

the vocal control of instrument parameters and a basic functional 

implementation. 

• Fasciani, S. 2012. “Voice features for control: a vocalist dependent method 

for noise measurement and independent signals computation”. In 

Proceedings of the 15th international conference on Digital Audio Effects. 

York, UK. – This work describes an early adaptive method to compute 

musical control signals from performer’s voice, together with the 

experimental study on different vocal features. 

• Fasciani, S. and Wyse, L. 2012b. “Adapting general purpose interfaces to 

synthesis engines using unsupervised dimensionality reduction techniques 

and inverse mapping from features to parameters”. In Proceedings of the 

2012 International Computer Music Conference. Ljubljana, Slovenia. – The 

paper presents the technique to provide an adapted dimensionality reduction 
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of the control space of sound generators through the analysis of the 

perceptual sonic response of an instrument. 

• Fasciani, S. and Wyse, L. 2013a. “A self-organizing gesture map for a voice-

controlled instrument interface”. In Proceedings of the 13th international 

conference on New Interfaces for Musical Expression. Daejeon, Korea. – 

This work describes the gestural controller based on the modified self-

organizing maps, its application for vocal control purposes and a fully 

working prototype of the system. 

• Fasciani, S. and Wyse, L. 2013b. “One at a time by voice: performing with 

the voice--controlled interface for digital musical instruments”. In 

Proceedings of the NTU/ADM symposium on Sound and Interactivity 2013, 

Singapore, and extended for eContact! 16.2. – This article provides an 

overview of the whole system, including the mapping generation, the runtime 

operations, the user perspective, and it includes details about the setup of a 

performance solely based on the developed prototype. 

 

Live solo performances exclusively based on the VCI4DMI were featured in the 

NTU/ADM Symposium on Sound and Interactivity 2013 concert, in the 2014 

Margaret Guthman Musical Instrument Competition1, where the VCI4DMI was 

selected as a semi-finalist, and in the fall 2014 Lindblad Electronic Music Meet 2014. 

Moreover the VCI4DMI was featured in systemic improvised duets and quartets at 

the 2014 Culture Night at the Academy of Music and Drama of Gothenburg.  

1.4 Thesis outline 

The structure of the thesis is organized in eight chapters. In Chapter 1 we present 

context and motivation of this work, detailing aims and contributions of this 

dissertation. Chapter 2 is dedicated to the scientific background and to the survey on 

existing systems for musical control driven by voice, including those that can be 

extended in that direction. From a critical review about their limitation, and from the 

perspective of the thesis aims we draw a set of design principles for our system. 

These are refined and further elaborated in Chapter 3 where we first identify the 

challenges introduced by the thesis objectives, and then we present our vocal gestural 

controller based on machine learning, that extract intermediate signals from the voice, 

representative of the performer’s control intention. Chapter 4 introduces a taxonomy 
                                                        
1 http://guthman.gatech.edu 
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of digital musical instrument, and a framework, which covers all the cases, to 

automatically obtain a sonic map relative to variation of synthesis or processing 

parameters. This chapter also defines a technique to reduce the dimensionality of the 

instrument’s control exploiting the computed sonic space. Chapter 5 addresses the 

issue of how to map across the two heterogeneous spaces, proposing a generative 

dual-layer mapping strategy that maximizes the overlap, minimizes the loss in 

explorable instrument sonic space, and avoids discontinuities in parameters retrieval. 

Next we dedicate Chapter 6 to the proof-of-concept prototype implementation, 

functionalities and user perspective. It also explains how it can be used for mapping 

fine tuning, for complex live performances as well as for further research on mapping 

strategies and instruments interfaces. In Chapter 7 we detail the methodology, 

experimental setup and results of the user evaluation. Finally in Chapter 8 we 

conclude by summarizing the contributions of this work, discussing their potential 

impact, and proposing future work directions. In Figure 1.1 we illustrate the overall 

thesis outline showing the interrelation between the different chapters. 

 

 
Figure 1.1: Illustration of the thesis structure by chapter content. 
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Chapter 2  
 

Background 
 

 

This chapter introduces the scientific background and the main research area in which 

this thesis is developed. At first we focus on the control strategies for DMI, 

presenting a history, characteristics, trends, and limitations of instrument interfaces, 

with particular attention to live performances. This is followed by a survey of 

previous work in which we analyze the different strategies for vocal control in the 

context of musical instrument interface. The review includes certain systems that are 

not specifically designed for musical task or to accept vocal input, but their extension 

can clearly provide interaction between voice and DMI. Finally, from the critical 

analysis of the related works, and in the direction of the thesis aim, we conclude the 

chapter establishing our research strategy and drawing a set of design principles and 

requirements for our system. Two other background sections on human voice with a 

perspective on machines interaction and on sound synthesis and processing 

characteristics of DMIs will be presented in details in Chapter 3 and Chapter 4 

respectively. 

2.1 Musical interfaces and controllers 

Acoustic instruments have slowly evolved over millennia to the canonical forms we 

know today. In contrast electric, electronic and digital musical instruments have been 

around for just over a hundred years, in which, supported by the rapid advances in 

related technologies, they continue progressing at a growing pace. Instrument design 

has hence turned from craftsmanship to an exact science, encompassing sound 

generation aesthetic as well as control aspects. For modern instruments this involves 

a variety of disciplines such as math, physics, engineering, computer science, 

psychology and music composition (Bernardini et al., 2007). The abstraction of 

musical interfaces started to exist per se only with the appearance of electronic 

instruments. In DMIs sound production is totally supported by electric energy and 

controlled by electric signals. The sound is generated as a sequence of numbers first, 

converted into an electric wave that is amplified and finally transduced into a 

mechanical longitudinal wave by loudspeakers, from which we perceive the sound. 
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There is no direct transfer of mechanical energy from the player to drive and excite a 

resonant body, as there is in acoustic instruments. The player interacts with an 

interface that generates controls signals only. The introduction of DMIs voided or 

subverted concepts valid across centuries for traditional instruments and the 

following key characteristics were central in their development and evolution: 

• The sound generation mechanism, the sound reproduction unit, and musical 

interface are independent components of a DMI. These parts can be 

physically decoupled and designed individually. For traditional instruments 

these are inseparable within the same physical body. 

• A DMI can generate any sound, exploiting a variety of sound synthesis 

techniques (J. O. Smith, 1991). From the accurate emulation of natural 

sound and acoustic musical instruments, to the generation of novel sounds 

not existing in nature. Since any waveform can be synthetized there are no 

theoretical bounds to the sonic potential of a DMI. For a given acoustic 

instrument, the timbre is fixed and natural. 

2.1.1 Brief history 

In the early days of electronic instruments, musical controllers and sound synthesis 

components were still designed and packaged together. The interfaces recalled 

acoustic instruments with the piano-like keyboard dominating the scene. The 

Theremin, in Figure 2.1, introduced by Lev Sergeyevich Termen in 1920, presented 

the first touch-less and gesture-free interface. It was a ground breaking introduction 

but remained a singularity for decades. At the same time, keyboards started to be 

equipped with pedals, switches, and continuous controllers for the real-time timbre 

manipulation, that constitutes a novel performance paradigm possible only with 

electronic instruments. A great boost to design and development of musical 

controllers was given by the standardization of a communication protocol between 

synthesis engine and interface. This had already happened three times in the short 

history of DMIs, and each time it provided greater control potential in line with the 

current technologies. In the 1960’s the manufacturers of voltage-controlled analog 

synthesizers adopted the logarithmic 1-volt-per-octave pitch control as the standard in 

the industry, which was introduced by Robert Moog in his synthesizers from 1964 

(Pinch and Trocco, 2002). The Musical Instrument Digital Interface (MIDI) protocol 

specifications were published in 1983 by the homonymous consortium, providing a 

digital serial communication method still widely used today. Finally in 1997 Matt 

Wright and Adrian Freed presented the Open Sound Control (OSC) protocol (Wright 
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and Freed, 1997), that overcomes several MIDI shortcomings such as limited numeric 

resolution and inflexible symbolic addressing. Moreover OSC provides native 

support for network-based transport mechanisms, allowing the use of existing 

infrastructure such as local networks or the Internet to exchange control messages 

between instrument modules. These introductions drastically eased the decoupling of 

the controller from the synthesizer, and thus promoted the modularity of DMI design. 

Sound modules and stand-alone generic interfaces started to appear, devices from 

different manufacturers could be interfaced, while users started to personalize their 

instruments control strategy and interconnections. Moreover multiple instruments 

could be controlled from a single interface, making stage setups more portable. 

However until the late 1980’s manufacturers still integrated synthesis and control in 

the same physical device, while some time later standalone modules started to be 

more common. Since the piano-like keyboard was often integrated in the DMI, this 

remained the most common musical controller. It provided velocity and pressure 

sensitive keys and, more recently, it integrates generic faders, button, knobs, and 

pads. Its popularity affected the way synthesis engines bundle and expose 

expressivity parameters. At that time musical controllers not inspired by acoustic 

instruments such as the keyboard or wind controllers (Wiffen, 1988), were limited to 

prototypes or market niches. 

 

 
Figure 2.1: Lev Termen demonstrating the Theremin in December 1927. 

 

Concurrently to the introduction and improvements of the musical 

communication standards, computer based sound generation became mature and real-

time capable, due to the exponential increases in clock speed and memory of general-

purpose personal computers. Specific languages or software to design audio synthesis 

and processing started to appear, drastically lowering the coding burden for users, 
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such as musicians, who may have little or no exposure to programming languages. In 

1957 Max Mathews wrote MUSIC, the first program for generating digital audio 

waveforms by direct synthesis in digital computer (Mathews and Guttman, 1959). It 

gave rise to MUSIC-N series that in 1985 Barry Vercoe reimplemented as Csound. In 

1986 Miller Puckette developed at IRCAM a non-graphical program to control the 

4X synthesizer (Favreau et al., 1986) (Puckette, 1986). In 1988 he developed the 

graphical version called The Patcher (Puckette, 1988), later called Max after Max 

Mathew, and commercialized by Cycling’74. It evolved into Max/MSP, a modular 

software package, including Digital Signal Processing (DSP) functionalities, for 

dataflow programming by graphical interconnection of routines that exist in form of 

shared libraries. In 1996 Miller Puckette presented Pure Data (Puckette, 1996), a 

software system similar to Max/MSP in scope and design, but released as open-

source. Another “strongly-timed” audio programming language, used for synthesis, 

performance, composition, and very popular among live coding artists was introduced 

in 2003 by Ge Wang and Perry Cook under the name of ChucK. The Virtual Studio 

Technology (VST) and the related and Software Development Kit (SDK), introduced 

by Steinberg in 1996, drastically boosted the development of third party commercial 

or free software synthesizer and audio effects. The VST is a standard cross platform 

software interface for the integration of virtual DMI as “plug-in” into audio editors, 

hard disk recording systems and Digital Audio Workstations (DAW). All these 

introductions turned computers into musical instruments (Mathews, 1963) that could 

finally be used to perform live, and not only to compose by offline coding. However 

they were generally still lacking in sophisticated musical interfaces. This fact 

stimulated the development of controllers that make synthetic sound production less 

disjunct from the body, providing visual representation and physical manipulation of 

real-time sound synthesis and processing. Moreover the figure of the performer 

started to arise and garner stature equal to the composer (Keislar, 2009). Today the 

musical interface remains often the only dedicated hardware component in computer-

based instruments, while the large availability of powerful personal computers 

embodied the other components in software form, and they became part of any studio 

or performance setup, promoting formations such as the Princeton Laptop Orchestra 

(Trueman et al., 2006). 

The development of a variety of sensor technology and recognition algorithms 

enabled the detection and tracking of physical expression of a performer, enabling the 

implementation of advanced and idiosyncratic musical controllers. Moreover open 

microcontroller hardware platforms facilitated the interconnection of transducers to 

computers (Wilson et al., 2003), permitting the fast prototyping of the hardware side 
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of musical interfaces as well. From The Hands (Waisvisz, 1985), the first 

experimental musical gestural interface based on the conversion of analog sensor data 

into MIDI control signals, to the more recent Reactable (Jordà et al., 2005), the first 

complete tabletop tangible user interface for musical application, hundreds of musical 

controllers have been presented due to the opening of vast design possibilities 

(Miranda and Wanderley, 2006). 

Current trends include the implementation of musical interfaces on portable 

devices such as smartphones and tablets, which offer a complete platform including a 

large number of sensors, powerful multicore processors, advanced operating systems, 

and seamless communications. These are relatively low cost and widespread to 

further increase the accessibility to musical controllers, as demonstrated by, for 

example, the Stanford Mobile Phone Orchestra (Wang, Essl, and Penttinen, 2008). 

Today, challenges in interface design are presented by the complexity and high 

dimensionality of data coming from the sensors. These devices are often equipped 

with a large network of heterogeneous transducers, aiming for enhancements in 

control efficiency and engagement (Tanaka, 2000). The data coming from the sensors 

cannot be easily and directly linked to synthesis parameters. A stage of processing to 

extract the musical intentions of the performer and the strategies to relate these 

streams of control data to instrument input has become an essential factor of any 

interface. Personalization and re-configurability features of DMI interfaces using ML 

techniques are gaining popularity, following the pioneering work of Wessel (1991) 

(Lee and Wessel, 1992) with Artificial Neural Networks (ANN). This has turned out 

in a design oriented towards a greater adaptability to the player (Paradiso and 

O’Modhrain, 2003). Recent musical controllers are no longer hardware-only devices, 

but they integrate a crucial algorithmic component, usually implemented in software, 

that users are starting to recognize as having primary value. 

2.1.2 Main characteristics 

The design of musical interfaces, despite their diversified nature (Paradiso, 2002), is 

today considered a specialized branch of HCI (Orio, Schnell, and Wanderley, 2001) 

where the simultaneous and continuous control of multiple parameters, the 

instantaneous response, and the necessity of user practice are key aspects (A. Hunt 

and Kirk, 2000). Across Rasmussen’s (1986) human information processing models, 

the skill-based behavior is the most compliant with the musical interfaces interaction 

(Cariou, 1992), consisting of the continuous response to a continuous signal in real-

time (Malloch et al., 2006). The interface of a DMI has a central role because often it 
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is the only physically accessible part of the sound generation chain and it represents 

the link between the mechanical and the electrical domain. It is the key element that 

enables the realization of the performer’s musical intention, expressed through 

gestures, into sound. Conceptualization and design of musical interfaces is 

challenging because it involves the transformation of sonic generation and control 

information across heterogeneous domains. The design complexity grows with the 

musical potential and control features of the synthesis and processing algorithms. The 

interaction with any musical controller can be reduced and generalized to the block 

diagram in Figure 2.2, which shows actors, grouping, domains, and flow that realizes 

the performer’s musical idea. 

 

 
Figure 2.2: Block diagram representing the data flow, the key processes, the domains, and the 

grouping in the interaction between a performer and a DMI. 

 

For the performer, the musical intention is expressed with a motor action called 

gesture, which can vary drastically depending on the physical characteristics of the 

interface itself (Cadoz and Wanderley, 2000). The ability to perform with a musical 

instrument is in general not acquired quickly, because the interface usually favors the 

expressive potential at the expenses of simplicity. However through extensive 

practicing musicians can achieve a level of “control intimacy” that minimizes the 

cognitive complexity necessary to produce the desired sound (F. R. Moore, 1988), to 

the point where players consider instruments as an extension of their bodies (Fels, 

2000). High intimacy bestows smoothness to the performance and permits virtuosity. 

The acquisition of the gestural data relies on sensors or transducers, which 

convert the mechanical energy of the gesture into an electric signal. Depending on the 

sensor characteristics and their application the gestural acquisition system can be 

direct, indirect or physiological (Wanderley and Depalle, 2004). In the first case each 

sensor signal is representative of a single basic feature of the gesture. In indirect 

acquisition the gesture is captured through an audio (Puckette and Lippe, 1994) or 

video signal, while electromyography (Tanaka and Knapp, 2002) or 
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electroencephalography are examples of physiological acquisition. Indirect and 

physiological acquisitions, besides allowing wearable or touch-less musical 

interfaces, present a more complex and high-dimensional gestural data stream. 

Therefore after digitizing the sensor signals, the gestural controller (Rovan et al., 

1997) runs tracking, recognition or detection algorithms to eliminate noise, 

nonlinearities, redundancies, and correlation in order to isolate the desired musical 

control information. For simple cases with direct acquisition the gestural controller is 

often not included because operations such as segmentation, scaling, and limiting are 

sufficient to process the gestural data. Instead, the gestural controller eases the design 

of complex interfaces by separating the operations into two separate layers, and it 

produces a set of intermediate abstract control parameters as output. 

The following stage, often considered the core of the musical interface, performs 

the mapping between control parameters and sound synthesis parameters (A. Hunt, 

Wanderley, and Kirk, 2000). Depending on the number of input and output signals, 

the mapping can be one-to-one, divergent (one-to-many) or convergent (many-to-

one) (Wanderley, 2001). A variety of techniques have been used to establish the 

mapping, from direct linear relationship to more sophisticated geometrical methods 

that become challenging when continuity and differentiability are required and the 

parameters dimensionality is high (Van Nort, Wanderley, and Depalle, 2004). The 

existing mapping strategies can be divided in two classes: explicit and generative 

(Andy Hunt and Wanderley, 2003). In the first one the designer defines a priori the 

relationship between control and synthesis parameters, while in the second the 

relationship is the outcome of a training procedure using ML or other adaptive 

techniques. However, in both cases, the mapping algorithm itself should satisfy the 

real-time and low latency requirements of musical interfaces. The mapping chain, 

when paired with a synthesis algorithm, can also mutate a continuous gestural input 

to a discrete musical output and vice versa. Therefore the nature of the sensors of an 

interface does not restrict the kind of musical interaction that can be achieved (Kvifte 

and Jensenius, 2006). Depending on gestural data acquisition, gestural controller, and 

mapping Wanderley and Depalle (2004) classify the existing controllers into four 

categories: instrument-like, where the design of the input device tends to duplicate 

features of existing acoustic instruments; instrument-inspired controllers, same as 

before but conceived for a different use; extended instruments, which are existing 

instrument augmented with the addition of extra sensors; and alternate controllers, 

that do not resemble any traditional musical controller and neither restrict the 

performer motion in any way (Mulder, 2000). 



 

 14 

Similarly to their acoustic counterparts, DMIs provide feedback that performers 

use for grounding the proprioception of the playing act and sonic interaction. For both 

instrument categories, the output sound constitutes the secondary feedback while the 

physical characteristic of the device provides a visual passive primary feedback such 

as the position of a fader or the status of a key. In acoustic instruments the active 

mechanical transfer of energy to the sound generating mechanism implicitly provides 

an active feedback, usually vibrotactile or haptic. This characteristic, often missing, 

can be emulated on DMI interfaces using mechanical transducers, relating it 

coherently to the gestural input. The active primary feedback can also be augmented 

or replaced with graphical or additional sonic feedback. However its design can be 

strongly limited by the choices on the gestural data acquisition system. An absolute 

lack of primary feedback, as in the Theremin, can make skill mastering and 

performing extremely burdensome. 

2.1.3 Artistic impact 

The novelties in the DMI characteristics have drastically affected the perspective on 

the instrument for designers, performers and listeners. In the early days the aim was 

to imitate acoustic instruments in their sound, interface and functionality. It was only 

when artists, composers and musicians started to go beyond the traditional music 

paradigms that new sounds and new ways of playing became “musically accepted”, 

drastically stimulating the development of DMIs. Luigi Russolo, who introduced his 

Intonarumori in 1913, is considered the pioneer in using noise material in musical 

composition, influenced by sounds of the industrial revolution. He inspired the work 

of Pierre Schaeffer and Musique Concrète artists that in the 1940’s started to use a 

wide sound palette in their pieces, which includes sounds from the real world. Cage 

in his compositions and writing foresees the future of electronic music and 

instruments, predicting 

 

“I believe that the use of noise to make music will continue and increase until 

we reach a music produced through the use of electrical instruments which 

will make available for musical purposes any and all sounds that can be 

heard. Photoelectric, film and mechanical mediums for the synthetic 

production of music will be explored.” “Wherever we are, what we hear is 

mostly noise. When we ignore it, it disturbs us. When we listen to it, we find 

it fascinating.” “The present methods of writing music […] will be 
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inadequate for the composer, who will be faced with the entire field of 

sound.” 

– John Cage (1937). 

 

Therefore technological and socio-cultural changes had brought music to the point 

where every sound is admissible, theoretically realizable, and equally accessible 

(Wyse, 2003), and this represents the reason behind the continuous evolutionary 

process of sound related technologies. There are no limitations that confine the 

designers to particular timbral characteristics, sound generation mechanism, physical 

dimension, and performance style to control the instrument. 

Through experience and senses humans can identify mechanical aspects of the 

event that generates sound. We search and guess material, shape, cause and location 

by auditory cues (Emmerson, 1998). In the same way we can predict the sound of a 

mechanical event by visual cue. This principle applies also to musical instruments. 

When a musician is about to play we expect to hear a distinct timbre, coming from a 

specific direction, generated by a clear relationship between gesture and sound. The 

advent of DMIs has radically changed the perspective of listeners, breaking all the 

certainties. DMIs have “acousmatically dislocated” sound from player action in 

space, in mechanical causality, and in time (Emmerson, 1994). Visual cues as well as 

experience may not help to predict timbre, gestural control, source location and 

spatial characteristics, because musical interfaces often differ from familiar physical 

forms of acoustic instruments. This lack of correlation induces the audience, usually 

passive but in some cases with an active role (Blaine and Fels, 2003), to build a 

relationship between aural and visual information during the performance itself. If 

mapping between gesture and sound changes, then the model of their relationship 

must be rebuilt. The DMI interface is fundamental in this process because it is often 

the only visible music-related object on stage. More than a drawback, musicians 

exploit this characteristic of DMI as a novel artistic potential by performing with 

unique alternate or extended controllers. The sonic palette, the performer interaction 

and the instrument itself became integral parts of the artwork. Anything can be used 

to control any aspect of any sound, since musical interfaces can be also mapped to 

control sound alteration algorithms, also called audio effects. Filters that modify 

audio signals properties had been used extensively, but with static parameters. Today 

the use and control of these algorithms in live performance is common and 

commensurate to sound synthesis (Wanderley and Depalle, 2001), and it provides 

further real-time manipulation of timbral and spatial aspects of the sound. 



 

 16 

2.1.4 Limitations and trends 

Learning to play with a new musical interface does not follow the same path of 

traditional acoustic instruments. It is not possible to acquire the complex 

representation of the relationship between motor action and sonic response of the 

instrument when the same controller can be used with different mappings and 

different synthesis algorithms. Moreover these evolve so quickly that musicians 

rarely have enough time to develop virtuosity (Paradiso and O’Modhrain, 2003). 

Making a NIME is usually easier than playing it well (Lyons and Fels, 2012), and the 

number of virtuosi or professional musicians using these as their main instrument is 

exceptionally small while many computer musicians still compose and perform using 

mouse and keyboard or, at the most, a generic fader box (Jordà, 2004a). The reasons 

behind this are generally the commercial unavailability or the high cost, plus issues 

related to efficiency and learnability. Some successful interface designs favor 

virtuosity and nuances, requiring extensive skills mastering training, others present a 

low entry fee, capturing the interest of beginners, but mostly both fail in promoting 

continuous exploration, discovery and creative use (Machover, 2002). Wessel and 

Wright (2001) argue that both characteristics should belong to a NIME, the ease of 

use in the early stage should not be at the expense of the potential to develop musical 

expressivity. They believe that musicians will be more prone to skill development 

and personalization, which ease generation of musically attractive experiences, only 

if the instrument presents potential for control intimacy. This is in accordance with 

design principle of tools that support creativity (Resnick et al., 2005), but in contrast 

with the general goal of human factors and ergonomics, generally inclined to 

facilitate the use of devices. Easy interfaces require less effort to perform and this 

often results in a loss of expressive power (Vertegaal and Ungvary, 1995). Rather 

than being just easy, a musical instrument should be highly compatible with the 

performer, so that the “naturalness” of the interface leads to its “transparency” 

(Norman, 1988). This depends on the consistency and adaptability of an interface to 

the user preferences (Shneiderman and Plaisant, 2010). Therefore there is an 

emerging trend in instrument design that is going towards a greater flexibility to 

accommodate the individual performing style and input modality (Paradiso and 

O’Modhrain, 2003). Nevertheless Cook warns that when the instrument learns 

directly from the player the training and performance modes must be well separated 

since learning to play an ever-changing instrument is rather difficult. Moreover 

interfaces filled with user options and programmable features provide an infinite 
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landscape for experimentation and creativity, but these rarely get used in real 

performances or artworks (Cook, 2009). 

Decoupling interface and sound generation in DMIs represents a challenge and 

an opportunity. Today the design of controller and musical algorithm is often 

completely agnostic. The designer of a controller can hardly predict the final user’s 

choices on synthesis mapping and vice versa. Both halves make use of the 

communication standards and expose a set of generic parameters, sometimes low-

level and without direct perceptual meaning. This implies the user’s central role in 

defining and implementing the mapping that usually follows explicit and fixed rules. 

When the devices present sophisticated characteristics this method fails to represent 

the complex and indeterministic relationship between a performer and computer 

based musical instruments. The mapping algorithms should also react dynamically to 

the performer input, changing arbitrary relationships between controls (Chadabe, 

2002). This is the principal drawback that separation between controllers and sound 

can bring to DMI design (Jordà, 2004b), and even advanced mapping techniques 

show limits in coping with it. Currently this issue is addressed with the renaissance of 

mutual design of synthesis and interface (Cook, 2004), or the generative adaptation of 

the interface mapping to the sonic characteristics of the specific sound synthesis 

algorithm (Arfib et al., 2002). 

Improving the DMI expressivity through additional interface control potential 

had been among the main goals of musical controller designers and researchers for 

decades. Augmented instrument-like or instrument-inspired interfaces are evident 

examples of this tendency. The most popular and widespread piano-like keyboard, for 

instance, has been recently proposed in many variations with capacitive multi touch 

keys (McPherson, 2012), integrated analog sequencer (Snyder and McPherson, 

2012), pedals, knee levelers, bowing, breath controllers (Wierenga, 2012), and optical 

sensors capturing the key motion (McPherson, 2013). These works show a pattern in 

exploiting performer’s spare bandwidth to provide extra continuous control that is 

lacking in many common interfaces. The urge for continuous controllers surged when 

algorithms, running on faster processors, started to support runtime modification of 

real-valued synthesis and processing parameters without generating glitches in the 

output sound. This gave rise to novel composing and playing paradigms, where 

morphing the sound timbre, texture or spatial features across a contiguous and infinite 

sonic space prevail over traditional melodic and harmonic elements (Rowe, 1995). 

This trend is particularly evident in electronic music that is often denigrated for its 

simplicity, but must be credited for its obsessive exploration and application of new 

musical technologies and for exposing these to the masses (Collins, 2009). Live 
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performances of electronic music, thanks to the power of modern general-purpose 

computers, often involves the use of a DAW that hosts and synthesizes the equivalent 

of a large ensemble in real-time. The hundreds of events and parameters contrast with 

the small number of players involved in the performance, often one only. Therefore 

the performer often raises the abstraction level of the interaction by programming 

sequencers or triggering pre-recorded material, alternating his role between conductor 

and single instrument player. In this way the performer may control richer but less 

flexible sonic objects, and the required musical interaction skills can be dramatically 

different. Moreover the real-time aspect of the control is also lowered because the 

performer can asynchronously schedule events in a pipe that is executed by a 

machine. However the automatic sequencing of predefined or computer generated 

musical events degrades the live nature of the performance itself. A limit is often the 

overlapping hand-based input modality of the interfaces, although foot controllers are 

a common and effective partial workaround. Therefore, current research directions to 

address these problems are looking at exploiting spare bandwidth of players, and at 

the runtime re-configurability of controllers. 

In this section we have discussed some of the limitations, trends and challenges 

related in modern DMI interfaces, focusing the attention only on those that contribute 

to determining the aim of this thesis. 

2.2 Related works 

Several musical controllers driven by human voice have been proposed starting from 

the late 1960’s. The Voder, named as an acronym of “voice operating demonstrator” 

invented by Homer Dudley at Bell Labs in 1928, patented in 1939, and later renamed 

Vocoder, started to be used from the 1960’s to generate synthetic sound driven by 

voice. It was originally a complex machine consisting of manually operated 

oscillators, noise generators and a filter bank that skilled operators were using to 

produce recognizable speech. It found musical application when the sound of a 

synthesizer was used as the input of the filter bank (Tompkins, 2011). Morphing of 

the voice signal for musical application has today evolved to more extensive systems 

allowing skilled beatboxers (Stowell, 2008) to layer and morph their voice 

extensively, sometimes even obtaining virtual polyphony from a single voice 

(Foreman, 2013). These systems perform only a modification of the voice applying 

processing algorithms within the audio signal domain, and thus do not provide any 

explicit control opportunity. In this section we focus only on methods that capture the 
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performer voice signal, usually with a microphone, break down frames of the order of 

milliseconds into low-level features, and generate arbitrary control signals or sound 

interaction strategies, similarly to the performance-drive approach (Rowe, 1993). We 

present a survey on recent works with the intent of identifying the limitations and 

drawbacks in state-of-the-art. In reviewing the literature we discuss various aspects 

such as the gestural acquisition, the gestural controller, system setup, eventual 

training procedure, and musical control. The survey is divided in two parts that detail 

related works presenting explicit and generative mapping strategies respectively. We 

also include some systems not specifically designed for generating musical output or 

for accepting vocal input such as generic HCI vocal interfaces and ML mapping 

tools, but we discuss their extension for providing interaction between voice and 

DMIs. 

2.2.1 Explicit mapping 

In this category of mapping strategies the designer defines a clear and fixed 

relationship between performer actions represented by the gestural data and the 

instrumental control parameters. Generic pitch-to-MIDI converters have been used 

for decades to map pitch from voice to instrument. The Roland SPV-355 was 

introduced in the late 1970’s presenting basic functionalities. The more recent VP-70 

and software plugins such as Widisoft WIDI and the DigitalEar offer more advanced 

capabilities such as of polyphonic pitch tracking, pitch bending and attack detection. 

The energy is tracked and mapped to MIDI velocity. These devices present an 

underlying mapping strategy that establishes an identity between voice and 

instrument loudness and pitch. Since the human voice is intrinsically monophonic, 

there are obvious limitations in exploiting instrument polyphony. 

The energy and pitch of human voice can be also captured non-acoustically 

through electroglottography, which is a noninvasive measure of the laryngeal 

behavior based on the variations of the electrical impedance across the throat 

(Lecluse, Brocaar, and Verschurre, 1975). This physiological gestural acquisition is 

adopted as an alternative to the sound input in the SynchroVoice MIDIVox that 

presents a mapping strategy identical to pitch-to- MIDI converters. Similarly, the 

Larynxophone (Loscos, Cano, and Bonada, 2005) concatenative cross-synthesis 

engine, is directly driven by pitch and energy computed from the voice. The pitch at 

onset time is used to query the trumpet samples database, while other spectral 

features such as the excitation gain, slope, and depth are mapped respectively to 
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velocity, modulation, and aftertouch. After the onset these values are used to 

continuously modulate pitch and aftertouch. 

The Singing Tree (Oliver, Yu, and Metois, 1997), part of the MIT Brain Opera 

installation, was the first work to present a more extended idea of mapping, in which 

voice nuances are used to interact with an ensemble of instruments. From the singing 

voice, 10 different dynamic parameters are extracted and mapped to an ensemble of 

MIDI instruments using different sound sources to resynthesize the character of the 

singing voice. The detected pitch is used to control the progress of a musical 

sequence towards its goal. The other features such as loudness, formants, cepstra, and 

their deviations, are mapped to multiple parameters using dynamic set assignment 

probability and random number generation. 

In the Wahwactor (Loscos and Aussenac, 2005), the central frequency of the 

resonant filter of the wah-wah effect is controlled by the guitarist’s voice, which 

varies across the phonemes /u/ and /a/. The most interesting aspect of this work is the 

preliminary study to identify which vocal features are the most robust and reliable for 

the musical control task. The authors conclude that the low- band spectral weighted 

area yields the smoothest and most stable response, improving the noisy 

performances given by all other considered features. 

Janer (2005a) presents two different plucked bass synthesis techniques controlled 

by a singing voice. The author argues that the selection of voice features and mapping 

depends on the instrument type as well as on the synthesis technique, and therefore 

the generic mapping model encompasses two layers. The first is related to the 

instrument interface, and the second to the controllable synthesis parameters. For the 

physical model, the string excitation is triggered by the voice energy envelope onset 

detection, and the pitch defines the length of the string algorithm delay line, initially 

filled with the attack samples of sung note. In the spectral morphing synthesis 

algorithm the plucked bass sound is generated by the concatenation of spectral frames 

from a database, storing information about spectrum, harmonic peaks, pitch, dynamic 

and attack type. Finally pitch and harmonic peaks computed from the voice are used 

to find the closest element in the database, while the “attack unvoiceness“is used to 

select between fingered and sharp slap attacks. Janer extends and further generalizes 

this work in the Singing- Driven Interfaces for Sound Synthesizers (Janer, 2008) 

proposing a system based on the imitation of the sound of the instrument by the 

user’s voice, performing a temporal segmentation of the voice based on syllables, and 

mapping voice pitch and loudness to the corresponding instrument features. The 

system generates a real-time score and one continuous value parameter derived from 

the first two formants, which can be used for timbre modulation. The author applied 
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this method to control acoustic instruments emulators, arguing that for this aim a 

single parameter would be sufficient because the vocal apparatus has a wider range of 

timbre variation than acoustic instruments, which present nearly fixed timbres. On the 

contrary for non-natural or acoustic sounds synthesis this approach shows limitations 

since the timbre variation range is generally wider, and it requires multiple 

parameters for full control. 

Image-based gestural data acquisition is used in the Mouthesizer (Lyons, 

Haehnel, and Tetsutani, 2003) and in Tongue ‘n’ Groove (Vogt et al., 2002). The first 

uses a head-worn camera to track the mouth height, mouth width and mouth aspect 

ratio. These are mapped respectively to the wah-wah filter frequency, amplifier 

distortion, and formant filters morphing in a guitar effect chain application. The 

second acquires the image of the tongue from a two-dimensional medical ultrasound 

scanner. The tongue motion is tracked by contour or optical flow extraction, 

providing a set of coefficients mapped directly to the synthesis algorithm further 

processed to control pitch, note triggering and filtering of basic synthesizers. These 

two acquisition systems ignore the source component of the vocal apparatus, focusing 

the attention on a partial estimation of the filter part, which depends, as we will see 

later, on both the shape of the mouth opening and position of the tongue. These 

approaches present the advantage of not being affected by external noise or breathing 

pauses that interfere and interrupt instrument control in other systems. 

In Software Tool for Vocal Control of Musical Elements (Deacon, 2014) the 

voice drives different aspects of the system depending on the temporal duration of the 

command. Repetitions of short commands toggle the status of different sections of 

the system. Medium-length commands are analyzed by a simple word recognition 

system then mapped to selection of the active sample bank in a sampler or 

synthesizer. In longer commands, the pitch and the duration are recognized and used 

to trigger different samples, while for the synthesizer the pitch of the voice is directly 

mapped to the instrument note. Despite the fact that the mapping is explicitly tuned to 

the designer use preferences and limits of the implementation, this work shows two 

interesting aspects. The author proposes the use of the voice as an additional and 

multifunctional control layer for performers already fully engaged with other 

instruments. Moreover the work demonstrates that vocal control can be extended 

integrating words or speech recognition, to control non real-time and non-musical 

parameters of a DMI such as switch across presets or control target. 
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2.2.1.1 Generic HCI interfaces 

The use of human voice to interact with machines is an emerging trend in several 

HCI fields. This is often limited to speech recognition techniques, which falls short of 

central DMI interface requirements such as low latency and multi parametric 

continuous control. However some HCI vocal interfaces establish the interaction at 

non-verbal level (Igarashi and Hughes, 2001), enabling real-valued control and fast 

system response, demonstrating musical control task compliancy. In these systems 

the different vowel sounds are detected to control an emulation of a drawing tablet 

(Harada, Wobbrock, and Landay, 2007), a joystick (Bilmes et al., 2005), or to 

command a robot arm (House, Malkin, and Bilmes, 2009). The eight vowel classifier 

outputs are mapped to the movement direction, while energy, pitch and vowel quality 

provide three additional independent levels of freedom, mapped onto other 

continuous value parameters such as the speed of movement. Despite the basic 

mapping that emulates common machine controllers, these works show a value for 

the motor impaired individuals and for hands-busy environments. They also report 

encouraging user-study results showing acceptable learning rate and proficiency 

(Harada et al., 2009). 

2.2.2 Generative mapping 

Mapping strategies classified as generative consist of the adoption of supervised or 

unsupervised ML algorithms to establish the relationship between performer’s actions 

and instrument controlled parameters. The adoption of a learning algorithm eases the 

mapping definition, and provides adaptive and reconfigurable characteristics to the 

instrument interface. 

The Billaboop (Hazan, 2005) is a real-time system that translates beatboxing 

onomatopoeic vocal sounds into synthetic or sampled drum sounds. This work 

presents a hybrid mapping approach. Onset detection explicitly triggers sounds, while 

other descriptors are mapped to effects or synthesis parameters. A set of spectral 

vocal features including the centroid, the high frequency content, and energy of three 

bands computed over the onset frame are used to query a decision tree that returns the 

label of the sound to be triggered. The decision tree classifier is trained using the 

early descriptors of a large set of vocal hits from a specific performer, manually 

labeled and grouped into three macro categories. The wide range of sound used in 

beatboxing is not formally defined and may vary drastically across performers. In this 

context, a supervised classifier offers an effective solution, providing the capability to 
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adapt to vocal style and voice characteristics of the performer. A similar method 

applied on larger temporal grain with rhythmic pattern detection is used to “query-by-

beatboxing” a database containing loops and songs (Kapur, Benning, and Tzanetakis, 

2004), implicitly providing a less real-time interacting environment. 

Orio (1997) uses the inner shape of the oral cavity as the gesture and this 

approach does not require the user to utter vocal sounds. Here the oral cavity 

represents a resonator for an external sound source, similarly to the Jew’s harp case. 

Two physical waveguides are used to feed the oral cavity with white noise and 

capture the filtered signal. Deconvolution of input and output signals provides the 

parameters of the linear filter that approximates the performer intention through 

variation of the inner shape of the oral cavity. The system undergoes a training phase 

in which the performer assumes all the postures used for control, and the relative 

gestural data made of 12 Linear Predictive Coding (LPC) coefficients is used to find 

the Principal Component Analysis (PCA) projection matrix. In the real-time use of 

the interface, two or three principal components of a new incoming LPC vector are 

used to control continuous valued parameters of an arbitrary instrument. 

In Auracle (Ramakrishnan, Freeman, and Varnik, 2004), an interactive network 

based collaborative musical instrument, root-mean square, zero crossing rate, 

fundamental frequency, frequencies and bandwidths of the first two formants are fed 

to a higher level analytical stage in which frames are segmented and classified into 

gestures. The low-level features envelopes are classified using a PCA for 

dimensionality reduction followed by an ANN. The control data obtained is 

transmitted by multiple users over the network, and merged by a single server to 

control a single sound synthesis system. The mapping to the specific synthesis 

algorithm is still implemented explicitly by the user on the server side. 

Similar approaches are taken in the scrambled?HaCkZ! (König, 2006) and in 

(Janer and De Boer, 2008), where the voice data is used to retrieve and then sequence 

sounds slices from a previously analyzed database. In the first case a classifier selects 

the most similar sound frames running a classifier of a large set of features computed 

on the voice live input. The sound chunks in the database are extrapolated offline 

from music videos, in sizes of fractions notes, and played back with the original 

associated clip. In the second case, vocal timbre features are projected onto their 

principal components and then mapped statistically onto the timbre principal 

components of the database of an audio mosaicing system. The mapping aims to 

optimize the overlapping of the voice timbre space to the sound database features by 

inserting an intermediate and case dependent transformation stage. 
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Stowell (2010) presents a mapping strategy that overlaps two timbre spaces, one 

derived from the analysis of a voice gesture and another related to the sonic variation 

of a synthesis engine subjected to different input parameters. The author analyzes the 

voice and the sound of the instrument computing identical high dimensional features, 

which are projected onto their principal components, and then two different methods 

to implement the “remapping” are proposed. In the first one, a piecewise warping 

transformation is adopted to distort and rearrange both spaces spanned by the 

principal components in an equal manner. The coordinates of new incoming voice 

vectors are then used to pick a point in the sound synthesis space. The second one is 

based on a prior reorganization of the spaces made by an auto-associative regression 

tree (Stowell and Plumbley, 2010), which recursively divides the two spaces and 

finds cross associations for real-time mapping. Finally the synthesizer is driven with 

the parameters associated with the target timbre. In this kind of approach, the 

relationship between synthesis parameters and sound may not be one-to-one, and it 

may cause discontinuities in the output of the instrument. 

2.2.2.1 Machine learning mapping tools 

The implementation of a generative mapping strategy is usually complex and requires 

significant programming skills, usually beyond the competence of average DMI 

users. Several research works have provided software tools to musicians for exploring 

and performing with personalized mappings generated by algorithms rather than 

manually defined. Using ML techniques is often a necessity rather than a choice, 

because the explicit definition of mappings that involves high dimensional gestural 

data and a high number of synthesis parameters is impracticable rather than difficult. 

To date a variety of ML techniques for classification, clustering and regression has 

been applied to DMI interfaces, in both the gestural controller or the mapping 

component (Caramiaux and Tanaka, 2013). In this section we review those generative 

methods supporting mapping of continuous gesture-to-instrument parameters and 

without constraints on the gestural data input, implicitly supporting the mapping of 

voice-to-instrument given a proper stage of gestural data acquisition or a gestural 

controller. 

The IRCAM Gesture Follower (Bevilacqua et al., 2010, 2011) is a generic 

system allowing real-time gesture following and recognition. Live audio input comes 

across the various supported input modalities providing Mel Frequency Cepstrum 

Coefficients (MFCC) analysis, commonly used in many voice applications. The 

Gesture Follower is based on a left-to-right Hidden Markov Model (HMM), which 
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continuously outputs a generic real-valued parameter indicating the temporal 

correspondence between the observed and the reference gesture. This can be used for 

a basic DMI interaction or to dynamically change the map between the performer’s 

gesture and the instrument of another system. However the adoption of the HMM, 

independent from the dimensionality of the gestural data, results in a mono-

dimensional output and introduces causality constraints between gesture and the 

system output. This work has been extended using Segmental HMMs, a generative 

method for shape modeling, which allows continuous signals to be segmented and 

indexed at the same time (Caramiaux, Wanderley, and Bevilacqua, 2012), and 

providing hierarchical multilevel time structure (Francoise, Caramiaux, and 

Bevilacqua, 2012). These improve the mapping potential establishing different 

relationships at long and short temporal frames, as well as providing additional output 

from musical control consisting of the direction, scale, angle, and speed of the current 

gesture against those stored in the HMM. 

The Wekinator (Fiebrink, 2011) offers musicians and performers a diversified 

range of generative methods for mapping between gestural data and instrument. It is a 

meta-instrument to train and modify standard ML algorithms for interactive mapping 

purposes. Basic audio feature extraction is provided, while more advanced features 

computed externally can also be fed to the input via OSC. Except for the ANN, the 

available ML algorithms are supervised and provide only discrete output. With the 

discrete classifiers it is possible to map vocal features to discrete values of 

instruments, trigger events, or switch between parameters presets. The application of 

the ANN presents interesting possibilities for the control of multiple time-continuous 

and real-valued instrument parameters, but it relies on the quantity and consistency of 

the training data, in input-output pair form, provided by the user. The required 

quantity of training data can be considerable if the underlying model is highly 

nonlinear. To ease this task, the Wekinator provides a novel “play along” modality to 

generate the training data live (Fiebrink, Cook, and Trueman, 2009). A potential 

limitation of this approach is the lack of feedback for the user about common NN 

shortcomings such as unlearnable models, over and under fitting, requiring the 

system use to verify whether the ANN learnt the user control intent. Manual tuning is 

not available, so changes in the system response require modification of the training 

data and system re-training. 

The SARC EyesWeb Catalog (Gillian, Knapp, and O’Modhrain, 2011) packages 

the ML algorithms and functionalities comparable to the Wekinator but provides a 

Graphical User Interface (GUI) for dataflow programming that supports the 

combination of different ML algorithm, feature extraction, and training data 
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manipulation. It supports the prediction of the real-time gesture recognition and 

tracking performances by showing results of testing and validating of the system after 

training. 

A package of Max/MSP externals implementing a collection of ML algorithms 

supporting online training is described and provided by B. D. Smith and Garnett 

(2012). This includes spatial encoding techniques and ANN based methods such as 

self-organizing maps, a multi-layer perceptron, and the Adaptive Resonance Theory 

(Grossberg, 1987), a self-supervised technique in which the ANN is trained 

unsupervisedly by an automatic supervisor (B. D. Smith and Garnett, 2011). 

2.2.3 Drawbacks and open challenges 

The number of musicians and performers making regular use of any voice-control 

techniques is still very limited, in stark contrast to the wide use of human voice in the 

musical context. This suggests that the majority of the work described here still 

presents technical or conceptual design issues, even if some, in particular Fiebrink, or 

Janer and Stowell, introduced outstanding contributions in this context. The works 

based on explicit mapping propose closed and stand-alone interfaces with minimal or 

no tuning options, which conflict with the growing needs of performers for 

personalization, configurability, versatility and integration with other control devices. 

Moreover they generally fail to cope with different vocal tract characteristics of 

different users. Some of these works present naïve mappings that simply relate 

characteristics of the vocal apparatus such as pitch and intensity, to the homologous 

of a synthesis algorithm. Singing to trigger notes of an instrument, in addition to 

presenting high latency and error proneness compared to a basic keyboard, are 

furthermore restricted to a smaller monophonic note range. Moreover most of these 

works are still limited in instrumental expressivity in terms of sonic manipulation. 

The works based on a generative mapping definitely offer greater control 

potential and flexibility, but the user is still required to provide training data, and 

sometimes to choose some ML preferences. For supervised learning methods such as 

ANNs, the preparation of the training data can be even more tedious since they 

require large sets of input-output pairs. These must be consistent and representative 

of an underlying learnable model. Moreover, it is often unclear to the user whether 

the mapping idea expressed in training data was successfully captured from the ML 

algorithm, and real-time manual fine tuning options are difficult or impossible. All 

these issues represent an entry barrier in time and knowledge too high for most users, 

calling for a simplification of the setup process, at least for a basic first usage. 
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With the exception of the works of Loscos and Stowell, the selection of the 

signal processing analytical techniques applied to the voice for the computation of 

low-level feature vectors, are not justified or supported by prior studies on real data. 

We believe that this aspect must be further explored because a larger but flexible low-

level feature computation, especially if adapted to user specific data, may drastically 

improve some aspects of the interface. At the same time, the curse of dimensionality 

(Bellman, 1972), which undermines the learning effectiveness of many ML 

algorithms, must be addressed with a dimensional reduction stage in the gestural 

controller, that dispatches more compact and representative data at the input of the 

mapping block. 

Those works that take the characteristic of the output sound into account in the 

mapping generation can certainly provide a sort of co-design or adaptation between 

controller and DMI, which is one of the issues discussed in Section 2.1.4. The method 

to analyze the sound of the instrument must be able to capture any sound nuances, 

and thus different from the one used for the voice since the two sources are 

respectively indeterminate and fixed. The analysis of the DMI response represents the 

most promising strategy to provide adaptation to specific synthesis or processing 

characteristics for complex mapping scenarios. This approach requires further 

development, integration, and diversification to be universally compliant. 

2.3 Strategy 

From the analysis of the limitations and open challenges discussed in Sections 2.1.4 

and 2.2.3, and in the light of the motivation and aim described in Section 1.1 and 1.2, 

we formulate a set of design principles and requirements for the VCI4DMI system 

that determines the research topics of this thesis. We favor a modular strategy for 

approaching self-contained entities that can be easily integrated to contribute towards 

the main goal of this dissertation. In particular we separate the investigation of voice 

related matters from those pertaining to DMIs. The individual contributions are 

numerically evaluated and, when possible, their design and outcome are compared 

with the related work presented in this chapter. 
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2.3.1 Design principles and requirements 

Here we present a list of design principles and requirements for the VCI4DMI system 

that will be further elaborated as research direction and specifications in the 

respective following chapters: 

 

• Integrability with other interfaces by using voice as the gesture, which is a 

recurrent performer spare bandwidth. 

• Indirect acquisition of the gestural data from the vocal sound coming from 

normal microphones. 

• Error-safe control, favoring the mapping onto less “mission-critical” and 

error-prone musical parameters. 

• Multi-parametric control, permitting the simultaneous control of an 

arbitrary number of real-valued instrument parameters, and ensuring interface 

robustness and consistency. 

• Low cognitive complexity introducing a logical and natural interaction 

strategy and a reduced control space dimensionality to a maximum of two 

or three intermediate dimensions, which minimize the loss in the original 

instrument sonic potential. 

• Automatic adaptability towards voice characteristics, control style, and 

instrument sonic response, which assume no prior knowledge on these and 

implies the use of a generative mapping strategy. 

• Modular design that includes voice-dependent adaptation in the gestural 

controller and DMI-dependent adaptation in the mapping block, enabling 

independent reusability and reconfiguration of both parts. 

• Perceptual sonic analysis to provide an instrument response closer to the 

human perception of the sound variation. 

• Minimal user role in interface setup exploiting automatic and unsupervised 

methods that can work with limited training data and granting mapping 

learnability in any case. 

• Active feedback to support learning and use of the generated mapping by 

numeric and graphic visualizations. 

• Runtime tuning flexibility that supports real-time modification and 

personalization of the interface response. 

• Low entry barrier and high ceiling, providing basic and advanced use 

modalities to supporting the continuous creativity and skills development.  
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Chapter 3  
 

Vocal Gestural Controller 
 

 

In this chapter we describe a novel method that learns offline how to compute a set of 

musical control signals from the human voice, which is flexible and adaptive to the 

individual performer voice characteristics. This implements the Gestural Controller 

(GC) component of the musical interface we introduce in this dissertation, which 

includes also the gestural data acquisition and preprocessing stages. The chapter starts 

with an overview on the human vocal apparatus, vocal techniques, and fundamentals 

of voice processing in HCI. We determine entry point, challenges and objectives for 

this section of the thesis by addressing global issues of the state-of-the-art in relation 

to design principles and requirements. This is followed by a detailed description and 

motivation of the two learning algorithms developed to determine optimal voice 

signal processing settings for the interface, and to generate ad-hoc GCs using Self-

Organizing Map (SOM) principles. We illustrate the resulting runtime procedure to 

obtain the GC intermediate abstract control parameters in real-time from the voice 

input, applying the training stage outcomes. We conclude the chapter by evaluating 

the proposed method using real voice data for measurements and comparisons with 

other approaches. 

3.1 The human voice 

The background presented in the previous chapter was limited to the core science and 

issues of musical interfaces. In this section we introduce the human vocal apparatus 

and we discuss the use of voice in HCI in order to pave the way to the work and 

contributions described later in the chapter. 

3.1.1 Voice production apparatus 

The voice production apparatus of humans is a complex and unique mechanical 

sound generation system. Its characteristics support the production of an astonishing 

spectrum of sounds and expressive variations which derive from millennia of verbal 

communication evolution. Languages, contemplating the differences across these, use 
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only partial ranges of the total sonic potential of the human voice, which is used in 

full only by a few specifically trained vocal performers. In voice generation the 

diaphragm provides the energy by pushing air out from the lungs. The airflow 

generates a sound in the larynx by the vibration of the vocal folds. Finally the sound 

is filtered by the pharynx, mouth and nasal cavities. A large part of the body and a 

high number of muscles are involved in generating, controlling and articulating vocal 

sounds. This process is a sequence of respiration, phonation and resonance, color-

coded respectively in pink, blue, and yellow in the anatomy of Figure 3.1. 

 

 
Figure 3.1: Anatomy of the human voice production apparatus with labels color-coded by 

function.  

 

The voice production is historically often modeled as a source-filter system and 

simplified by assuming that the two components are independent (Fant, 1960). In the 

source, the lungs airflow serves as the supplier of continuous energy for the vocal 

system. With the vocal folds closed, when the sub-glottal air pressure exceeds the 

supra-glottal pressure by a certain threshold a temporary aperture of the vocal folds 

happens. These are quickly closed back by the fold tension and the suction created, 

via the Bernoulli effect, with the rapid airflow passing through (Van Den Berg, 

1958). The continuous repetition of this process, called modal phonation, puts the 

vocal folds into vibration and air pulses, with interval 𝑇!"#$%, flow into the filter 

component. This provides the periodic sound source for all voiced sounds such as the 
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vowels, with fundamental frequency  𝑓! =   1 𝑇!"#$% and harmonics at its multiples. 

The   𝑓! range and the level of harmonics varies across individuals, and is affected by 

factors such as gender, age, and physiological condition. For speech the range 

typically span between 100Hz and 400Hz, while in singing it extends from 35Hz to 

1500Hz, but it is usually limited to a maximum of two octaves in a single individual. 

The harmonic level decrease is averagely 12 dB/octave on average. The flexibility of 

the muscles around the vocal folds allows other modes of phonation such as 

whispering, ventricular, breathy, and creaky (Laver, 1980). In whispering mode the 

source generates aperiodic sounds with a broad spectrum. In this case the vocal folds 

do not vibrate as they are kept open but close together, producing an irregular and 

turbulent airflow in the larynx, determining the noisy perturbation that is at the base 

of most of the unvoiced sounds. The turbulence can also be produced directly in the 

mouth and in this case the vocal folds are held completely open, alike in fricative 

sounds. In the other cases the sound source operates in a modality halfway between 

modal phonation and whispering. 

The pharyngeal, oral, and nasal cavities work as resonant chambers so that the 

vocal tract operates as an overall resonant filter, shaping the spectrum of the sound 

source by exciting or suppressing specific bands. The resonant frequencies, also 

called formant frequencies, depend on shape and length of the vocal tract. The first 

depends on the positioning and shaping of the articulators such as lips, jaw opening, 

tongue, larynx and soft palate. The distance between glottis and lips determines the 

second. These are changed constantly while speaking or singing, resulting in a 

continuous variation of the resonant filter transfer function. The first five formants 

determine the personal character of the voice, which varies across individuals due to 

mechanical differences in the vocal tract. Figure 3.2 shows the functional model of 

the human voice production, where the vocal folds represents boundary between the 

sub- and supra-glottal tracts. In Figure 3.3 we illustrate the sound spectra at the 

source for modal phonation and whispering, the filter transfer function split into vocal 

tract gain and mouth radiation impedance, and finally the resulting output spectra. 

The amplitudes on the vertical axis are on a logarithmic scale. 
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Figure 3.2: Model of the voice production apparatus, after Clark and Yallop (1995). 

 

 

 
Figure 3.3: Source spectrum, filter transfer functions, output spectrum for voiced and 

unvoiced sounds in the source-filter model, after Epps, Smith, and Wolfe (1997). 
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3.1.2 Voice articulation, control and styles 

The articulators, residing in the filter part of the model, can sensibly modify the 

sound timbre of the source. Their configuration changes dynamically in the majority 

of spoken sound, altering the properties of the vocal tract such as the distance of the 

speech organs and the stricture of the airflow. For vowels sound the configuration is 

static, the source is usually in modal phonation and the soft palate is usually closed 

forcing most of the air to pass only through the oral cavity, while if open we are 

generate nasalized vowel sound. The lips and opening tongue constriction determine 

the frequencies of the first two formants respectively, which determine generation 

and perception of vowel sounds (Johnson, 2008). The larynx can be lowered or raised 

to change the overall vocal tract length, which result in a lower or upper frequency 

shift of the formants. The third formant frequency is inversely proportional to the size 

of the cavity behind the incisors. Although there are five discrete vowels in the Latin 

derived alphabet, these correspond to at least to eight different phonemes, the basic 

units of the phonology in every language. Moreover as the lips opening and tongue 

position are continuous quantities, vowel sounds can vary continuously in a space, at 

least bi-dimensional. The vowel space, in Figure 3.4, provides an imaginary 

representation of a cross-section of a human head looking left, with the tongue 

position on the horizontal axis (second formant frequency) and the lips opening on 

the vertical one (first formant frequency). Discrete vowel sounds associated with 

specific phonemes are mapped into this space. The coordinates are obtained by 

averaging the position for multiple utterances across uniform speaker categories, and 

the figure also shows differences in phoneme positions across genders and English 

accents. In the vowel space any coordinate, and thus any vowel sound, can be 

generated, within a region bounded by vocal tract physical constraints. Moreover, in 

vowel utterances from a single individual there is also significant variance on both 

axes, which depends on several psychophysical factors. Deviations are usually 

smaller for the singing voice, and larger for spoken voice (Mehrabani and Hansen, 

2013). 
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Figure 3.4: Vowel or formant space for different genders and English accents, after (Yan and 

Vaseghi, 2003). 

 

For other phonemes, the articulation changes over time rapidly modifying the 

characteristics of the source-filter system. Simple movements in the vowel spaces 

determine diphthongs, a category of phonemes determined by a quick glide from the 

articulatory position of a vowel towards another one. More complex articulation 

modes include: stop articulation, in which the air flow is completely occluded by the 

oral and nasal tracts; nasal articulation, with the occlusion of the oral tract only; 

fricative or spirant articulation, presenting a continuous friction that generates a 

turbulent and noisy airflow; sibilants articulation, similar to the fricative but with a 

groove in the tongue guiding the airflow toward teeth that creates a higher pitch 

sound; lateral fricatives articulation, with the phenomena taking place on one or both 

sides of the tongue's edge; affricate articulation, which starts similar to a stop and 

releases into a fricative; trill articulation, with the tongue held in place but vibrating 

due to the airflow; flap or tap articulation, in which there is a temporary closure of the 

oral cavity; approximant articulations, where the vocal tract presents little 

obstruction; and lateral or liquids articulation, pronounced with the side of the tongue 

and small obstruction. Vocal sounds are classified as obstruents, mostly unvoiced, 

and sonorants, nearly always voiced, depending on the presence of obstruction in the 

vocal tract. These articulation manners determine 42 different phonemes in American 

English, detailed in the tree of Figure 3.5, where these are grouped by articulation and 

class. The number of phonemes usually differs across languages and is higher than 

the number of letters in the alphabet because each one is in general associated with 

more than a phoneme, like those consonants that can be either voiced and unvoiced. 

Moreover these can be also grouped into occlusives and continuants, color coded in 

blue and red respectively in Figure 3.5. This grouping is determined by the ability to 
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sustain a sound driven by a specific articulation over time. As we will discuss later, 

this is a key voice feature in the context of this dissertation. 

 

 
Figure 3.5: American English phoneme tree, after Dekel, Keshet, and Singer (2005), with 

occlusive and continuant grouping coded in blue and red. 

 

The control over the voice apparatus is unconscious and it aims to produce 

specific dynamic sound rather than control the group of muscles involved in this 

process. The ear receives external and internal stimuli such as the bone conduction, 

and with the auditory system provides feedback about the voice generation activity. 

Thus we learn and master the use of the apparatus through a supervised reinforcement 

learning procedure, unconsciously adapting the control over the phonation system. 

Source and filter components can be controlled nearly independently. Furthermore in 

the source section the vocal folds vibration frequency and the energy of the pulses 

can be controlled separately because they are related respectively to pitch and 

loudness of the voice, which are two distinguishable perceptual aspects of sounds. 

The filter section of the vocal production apparatus has a more complex articulation 

structure, and the boundaries between independent and strongly correlated acoustic 

features are often faded and can differ across individuals. Sundberg considers the 

human sound generation mechanism similar to an organ, likely the most expressive 

acoustic instrument but also the most badly designed one, arguing that the 

relationship between articulatory movements and formant frequencies is very 

complex and difficult to control since it is a one-to-many system (Sundberg, 1987). 
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However at least the frequencies of the first two formants that determine the 

perceived vowel sound are considered independently controllable.  

Vowels and voiced sound in general play a fundamental role in the traditional 

musical use of the human voice. These can be sustained to generate a pitch that 

matches a specific musical note. Trained singers turn their musical intention into 

sound through the vocal production apparatus in the same way trained musicians play 

and control sound and expression of a specific instrument. They acquire the ability to 

accurately control acoustic sound quality such as the loudness, the pitch stability or 

glissando, the vibrato, and other qualities such as the phonation, the spectral 

envelope, or the singer’s formant (Sundberg, 2001). Moreover the singing voice 

quality can be further modulated with a set of vocal configurations, referred with the 

term vocal register (Henrich, 2006), which include four different modes of vocal fold 

oscillation namely low pulse register, low-to-mid-range pulse register, mid-to-upper-

head register, and high whistle/flute register. In each register the wave generated by 

the glottal source has audibly different characteristics, therefore it generates different 

vocal timbres beside different pitch ranges. 

In speech the modulation of the pitch, called pitch contour by linguists, has a key 

role as well. It determines the intonation, which may distinguish words or meaning, in 

pitch accent languages, while in tonal languages contributes to discriminate the 

various phonemes, lexically distinct variations of a single phoneme, different only in 

the tone of the vowel. Vocal tract articulations are used also to communicate 

information beyond the semantic meaning of speech. Paralinguistic and non-verbal 

components of the spoken voice such as the prosody and the affect, contribute to 

convey the emotional state of the speaker. Therefore the majority of individuals can 

use the voice expressively, at least in speech, even if having no musical experience or 

training. 

The beatboxing is another vocal style, consisting in the vocal imitation of drums, 

percussive sounds, basslines, vinyl scratching, and melodies, to virtually emulate 

polyphonic music, and it finds its origins in the 1980’s hip-hop culture. Beatbox 

performers make use of the largest palette of vocal sounds and vocal techniques 

across vocalists in order to generate a wide range of timbres. Moreover they try to 

cover or avoid linguistic hints that would suggest to a listener that the sound source is 

the human vocal tract. The extended vocal techniques often includes non-syllabic 

sounds, ventricular voice, falsetto, ingressive sounds, fast pitch variations, and trilling 

sounds (Stowell, 2010). Extensive training is essential, and also in this case the 

learning procedure is strongly based on the auditory feedback to match a specific 

non-vocal sound. Moreover placing the microphone at a closer distance from the 
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mouth and optionally cupping it with hands additionally extend the sound palette. 

Beatboxers demonstrates that the sonic potential, in terms of timbre variation, of the 

human voice production apparatus is much wider than what is commonly used in 

spoken and singing vocal styles. In fact Wishart argues that 

 

“From the vast array of possible sound-objects available from the human 

repertoire any natural language selects only a small portion and combines 

these phonemes into phonemic objects.” 

– Trevor Wishart (1996). 

 

This potential can be exploited in any voice-controlled system to enhance interaction 

capabilities and dimensionality, but it requires a method to capture user specific voice 

timbre range, which can vary more than cross-speakers phonemes also because 

utterance of these timbres are not formalized in any written form. 

The complexity of the vocal tract is also evident looking into realistic speech 

synthesis models, in which Cook (1991) identifies approximately 40 articulatory 

control parameters. These can be controlled independently when synthesizing vocal 

sounds, but strong dependencies and correlations, difficult to model, may appear in 

the human vocal tract. These can also vary with factors such as physical 

characteristics and diverse phonation techniques across native languages. The 

characteristics of the vocal tract or sound that can be controlled consciously and 

separately determine the degree of freedom of any system instantaneously controlled 

by direct voice timbre. This an open challenge and a key issue for this thesis. 

A deeper look into speech synthesis models provides us with other important 

information about control capabilities of the voice. A vocal synthetic sound such as a 

vowel, generated with constant synthesis parameters sounds unnatural and robotic. A 

more realistic feel is achieved applying a small amount of fundamental frequency and 

amplitude modulation. These, also known as vibrato and tremolo, are always present 

in the human voice and can be considered as unconscious slow rate Frequency 

Modulation (FM) and Amplitude Modulation (AM) around a target intentional value 

(Quatieri, 2008). Again the modulation amount can be significantly different across 

individuals or change with physiological factors. Vibrato and tremolo can be also a 

deliberate and conscious controlled choice, especially in singing, usually with a faster 

rate and wider amplitude. This characteristic of the vocal production apparatus 

suggest that even though a subject has the intention and the perception to utter with 

invariant articulation and constant acoustic features, some of the characteristic of the 

vocal sound will present a noisy behavior or modulations in amplitude and frequency. 
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Therefore another key aspect to use the voice for control of continuous quantities is 

the identification and minimization of the sources of “noise” in order to avoid 

propagating these down to the controlled system. Togneri presents evidences that the 

“spatial trajectories” of speech are four-dimensional manifolds embedded in higher 

dimensional spaces represented by a large set of heterogeneous low-level analytical 

features, related mostly to the filter part of the vocal tract (Togneri, Alder, and 

Attikiouzel, 1992). Even if not specifically investigating to which physical variables 

these four dimensions correspond to, and to what extent these can be explicitly 

controlled, the authors prove that vocal sounds usually embed three or four 

independent components. These are vital to establish a control as expressive as 

possible, but their extraction method requires a prior and offline analytical stage. 

3.1.3 Voice processing in HCI 

Despite privacy issues and inhibitions in the use of voice in spoken or singing form 

(Abril, 2007), the number of voice-driven systems is constantly rising and these are 

commonly found in consumer electronic devices. In general these applications offer 

users two advantages: a hand-free interaction and a faster data or commands entry. 

Since the prevailing use of the human voice is speaking, research efforts over the last 

fifty years have been mainly focused in automatically detecting the verbal contents 

from the voice audio signal (Rabiner, 1978) (Waibel and Lee, 1990) (Rabiner and 

Juang, 1993). Today the Automatic Speech Recognition (ASR) techniques find 

application in various scenarios in which the recognized words or sentence can be 

used to enter commands, search, dictate, or translate language in real-time. 

In ASR the speech signal is processed at different levels. At first the voice sound 

signal is chunked into overlapping windows, with a length of about 10ms to 40ms in 

steps of 10ms to 20ms, in which the signal can be considered quasi-stationary. Each 

window is processed and analyzed by DSP algorithms to extract a vector of low-level 

features, which provides a compact representation compared to the original sequence 

of samples, filtering out irrelevant information. The different feature extraction 

techniques that can be used, detailed in Section 3.1.3.2, aim to capture either the state 

of the vocal apparatus or the sound characteristics relevant to the auditory system. In 

the first case the feature extraction models the physical characteristic of the sound 

source, while in the second it models the acoustic perception. 

At the higher level the sequence of features vectors are used with an acoustic or 

physical model to determine a sequence of phonemes, which are considered the 

atomic elements of speech. The dominant and historically most successful approach 
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for this task is based on HMMs (Rabiner, 1989), which models states over a time 

series of features vectors, assigning to it the most likely combination of phonemes. In 

the next two levels phonemes are combined into words using a pronunciation model, 

and then words are combined into sentences using a language model. These two 

statistical models and their application are language, accent, and context dependent. 

The output of ASR is a coarse temporal grain series of discrete choices within a 

limited lexicon. Moreover due to the presence of multiple processing layers, each 

involving complex statistical models, the response latency is in the order of seconds. 

Therefore ASR is far from meeting minimal requirements of any system for real-time 

musical interaction. Speech contains approximately 12 phonemes per second 

(O’Shaughnessy, 2003), and the lexicon contains typically less than 50 phonemes. 

Thus in ASR the phoneme recognition determines a discretization process with rate 

and resolution too coarse for the musical control task we aim to achieve in this thesis, 

which targets the simultaneous control of continuous quantities. However the low-

level features, which consist of vectors of real-valued numbers, are extracted at 

higher rate and there still represent a quasi-continuous signal, appropriate and suitable 

for our musical control purposes. These are used in very different ways in the 

majority of the related works presented in Section 2.2, or further processed and left to 

the discretion of the user mapping preferences as in (Janer, 2005b) and (Kestian and 

Smyth, 2010). 

The layering of three statistical models in ASR on one side requires a large 

amount of labeled training data, which usually consist of thousands of hours of 

speech with time aligned transcription, but on the other provides a reliable system. 

Besides the high word recognition accuracy, ASR systems are able to discriminate 

the correct output even in presence of background noises, they are robust to intra-

speaker variability, and they handle inter-speaker differences (K. Stevens, 1971) 

(Yang, Millar, and MacLeod, 1996) providing a speaker independent system. 

Robustness and reliability are key factors in control interfaces but, as stated above, 

the higher-level statistical models of ASR are not compliant with musical control. 

Therefore, in the context of this thesis, providing robustness is an additional 

challenge that must be addressed at a lower level in the voice processing chain. 

Singing, which is the secondary use of the human voice, contains both verbal and 

musical contents. The verbal part can be processed with ASR properly adjusted to 

meet specific singing attributes (Loscos, Cano, and Bonada, 1999). The musical part 

is often processed with a monophonic pitch extraction algorithm. Further processing 

of this information is used in applications such as lyrics following, automatic 

accompaniment generation, or in the context of Music Information Retrieval (Orio, 
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2006) to query databases of songs, loops, samples, or audio frames, as presented in 

Section 2.2. In sub-verbal or non-verbal applications the verbal contents of the voice 

are not relevant for the interaction and thus not recognized by the processing routines. 

These applications extract single or vectors of acoustic features from the voice audio 

signal, which are further elaborated for speaker recognition, speech/singing detection 

and segmentation. The real-time voice to musical device interaction systems, broadly 

described in Section 2.2, fall in the category of non-verbal vocal HCI, like the work 

presented in this dissertation. The machine interaction is established at abstraction 

level close to the sound, or timbre, of the vocal sound rather than to its verbal 

contents and meaning. 

Apart from the voice processing and the final application, the communication 

channel between transmitter and receiver, mouth and microphone respectively, 

represents an issue. The acoustic channel is outside the control of the user and HCI 

system, and it can add to the original signal a considerable amount of noise. Even 

though some voice-processing algorithms present high noise robustness, it must be 

considered that external aleatory sound sources can still generate an error or an 

unwanted response at the system output. In general when the voice is not the sole user 

input modality, vocal controls are allocated to non mission-critical tasks, providing 

control expansion and reducing the user workload. Examples are the Direct Voice 

Input (DVI) system in the Eurofighter Typhoon EF200, or the voice commands for 

car infotainment systems. In both cases critical functions such as those for the vehicle 

navigation are generally not allocated to the vocal control, but left to common hand 

based controllers. We are faced with a similar scenario, as mentioned in the 

introduction, and therefore we need to extend this concept to instrument interfaces. 

Critical musical controls should remain mapped onto traditional tactile interfaces, 

while vocal control could be allocated to musical parameters that, if wrong, will less 

likely be perceived as an error by the listener. 

3.1.3.1 Acoustic perception of voice and sound 

The human auditory system, from the outer ear to the primary auditory cortex, can 

detect and track features of speech with higher robustness and reliability than any 

DSP analytical algorithm. The human hearing sense provides less numerical precision 

than machines, but it identifies acoustic features even when these are missing or 

hidden in the sound signal. The fundamental frequency  𝑓!, at which the vocal folds 

vibrate in voiced sounds, is usually lower than any of the resonances of the vocal 

tract, and thus absent or weaker than other harmonics. The human pitch perception is 
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based, at least in lower frequencies, on the spacing between harmonics, which is 

equal to  𝑓!, especially in the order of several hundred Hz (Goldstein, 1973), but it can 

represent an issue for numerical algorithms. A similar problem affects the 

computation of the formants. These are defined as the resonant frequencies of the 

vocal tract, but most of the tracking algorithms measure these from the frequency of 

the spectral peaks of the voice spectrum. If no harmonic falls in a resonance narrow 

band, a single formant doesn’t generate a spectral peak and it may not be detected in 

such a way. The error is propagated forward since all other detected formants would 

have a wrong order. Humans, even in absence of a spectral peak at the resonance 

frequency, perceive the right formants and therefore the right vowel, due to visual 

cues (Mcgurk and Macdonald, 1976) (Nath and Beauchamp, 2012), and also due to 

the short-time memory we unconsciously use in any perception tasks to support 

disambiguation (Selfridge, 1959). For similar reasons, verbal communication is still 

possible over traditional phone lines, which have typically band pass from 300Hz to 

4000Hz, a narrower bandwidth than the human voice frequency range. Moreover the 

loudness sensitivity of the human ear varies with the frequency, and it is most 

sensitive in the band between 1000Hz and 4000Hz. The loudness perception can be 

approximated with the logarithm of the energy. The equal-loudness contour in Figure 

3.6 shows the sound pressure levels that are perceived as having equal loudness at 

different frequencies. The sound pressure scale is in Decibel (dB), a logarithmic 

scale, and the curve presents the lower values in the most sensitive band, in which the 

human voice usually falls. 

 

 
Figure 3.6: Equal-loudness contour of human hearing perception, measured empirically by 

Fletcher and Munson at Bell Labs in 1933. 

 

The perception of the frequency spacing or frequency resolution of the human ear is 

non linear, and it decreases in the higher frequencies. Three auditory frequency scales 
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have been developed using different empirical subjective experimental settings: the 

Mel scale (S. S. Stevens, 1936), the Bark scale (Zwicker, 1961), and the Equivalent 

Rectangular Bandwidth (ERB) scale (B. C. J. Moore and Glasberg, 1983). These, 

displayed in Figure 3.7, present strong similarities, identical trend, and strong 

nonlinearity in the voice signal bandwidth. The Mel scale is widely utilized in voice 

signal analysis and the relationship to convert 𝑓!" to the linear perceptual frequency 

scale 𝑓!"# is described in Equation 3.1. 

 

 𝑓!"# = 2595 ⋅ log!" 1 +
𝑓!"

700Hz
   (3.1) 

 

 
Figure 3.7: Comparison between Mel, Bark, and ERB frequency scales. 

 

Since the human voice generation is controlled and regulated in strict relation to 

the hearing sense feedback, the implementation of a model of the auditory system is 

crucial for algorithms that analyze acoustic features. Some perceptual acoustic 

features of the voice can be tracked reliably in real-time, while other still require high 

computational load or forward-backward computation, both not suitable for real-time 

control applications. The auditory system can still perform in a reliable manner even 

when presented with voices from different individuals and in different environmental 

conditions such as the presence of unwanted background noise. This is in general not 

true for real-time analysis algorithms, which usually perform well only in specific 

scenarios. Therefore analytical algorithms may generate temporary wrong values, 

which likely determine spurious output signals or discontinuities, likely corrupting 

the final DMI real-valued parameter control purpose. An additional challenge is 
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represented by the high variability of this process, which cannot be easily generalized 

across users and application scenarios. 

3.1.3.2 Physical and perceptual feature extraction 

The voice acoustic signal is captured and transduced to an analogue electric time 

continuous signal 𝑠(𝑡) by a microphone, and then converted into time-discrete digital 

signal 𝑠[𝑛] by an Analog to Digital Converter (ADC). At this stage it can be handled, 

processed and analyzed as any baseband digital signal in the audio domain. For every 

window containing 𝑁 samples, scalar or vectorial descriptors are computed. A 

conspicuous number of time and spectral descriptors has been developed for audio 

signals. Those often used with voice show relation with physical characteristics of the 

voice production or with aspects of the voice perception. Here we review the most 

common analytical techniques. 

The short time energy, or root-mean square, in 3.2 describes the instantaneous 

power of the signal. The dB scale is often applied to provide a better estimation of the 

loudness perception 𝐸!" = 10 ⋅ log!"(𝐸!). It can be further elaborated using different 

filter curves for different bands to match the equal loudness contour. The energy can 

be used for voice activity detection. 

 

 𝐸! =
1
𝑁

𝑠[𝑛] !
!!!

!!!

 (3.2) 

 

The zero-crossing rate in 3.3 can be used as well to detect voice activity, and to 

discriminate fricative phonemes. It counts the number of time that the signal changes 

sign, giving a rough measurement of the signal brightness or noisiness. 

 

 𝑍𝐶𝑅 =
1

𝑁 − 1
𝕀 𝑠 𝑛 𝑠 𝑛 + 1 < 0

!!!

!!!

 (3.3) 

 

The autocorrelation measures the self-similarity of a signal with a version of 

itself time-shifted by   𝑘 samples, described in 3.4. For periodic signals, the 𝑘 value 

that maximizes the autocorrelation is likely to be the signal periodicity, and therefore 

the autocorrelation provides a measurement of 𝑓!. However autocorrelation often 

detects wrong values for the reason detailed in 3.1.3.1, thus more elaborated and 

accurate fundamental frequency detection algorithms are used for voice and 
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instrument sounds. Puckette developed a 𝑓! estimator that uses amplitudes and 

frequencies of the constituent partials to compute a maximum-likelihood function. 

The presence of peaks at multiples at or near multiple of the fundamental frequency 

maximizes the likelihood (Puckette and Apel, 1998). The pitch estimator YIN (De 

Cheveigné and Kawahara, 2002) is still based on the autocorrelation method, but it 

introduces a set of modifications that drastically minimize the error rate such as the 

minimization of a difference function that is ideally null for periodic signals time 

shifted by 1/𝑓!  periodic signals. Finally a more recent approach for 𝑓! estimation in 

monophonic signal performs multiple layers of fast lifting wavelet transform using 

the Haar wavelet, and for each audio frame it compares the spacing between the 

peaks in each wavelet to determine 𝑓! (Zbyszyński, Zicarelli, and Collecchia, 2013). 

The voice has a limited pitch range, so the value is generally considered in Hz or 

converted to the discrete values on the equal tempered chromatic scale. 

 

 𝑅! = 𝑠 𝑛 𝑠 𝑛 + 𝑘
!!!!!

!!!

 (3.4) 

 

Several spectral descriptors can be computed from the spectrum derived from 

the magnitude of the Short Time Fourier Transform (STFT) of every window such as 

the spectral moments, the slope, the decrease, the roll-off and variation. Moreover 

additional descriptors such as the noisiness, defined as the ratio between spectrum 

geometric and arithmetic means, can be extracted as described in (Vinet, Herrera, and 

Pachet, 2002). From the analysis of the frequency representation of each window it is 

possible to track formants frequencies, amplitude and bandwidth by detecting and 

measuring the peaks. The transformation to the spectral domain is usually based on 

the linear prediction, detailed later, or on the cepstral analysis in Equation 3.5, in 

which 𝑐[𝑛] represents the cepstrum, ℱ the Discrete Fourier Transform (DFT), and 

ℱ!! the Inverse DFT (IDFT). The cepstrum, defined as the IDFT of the logarithmic 

magnitude of the DFT of a signal, is frequently used in speech analysis because it 

considers the spectrum as a quasi-periodic waveform, and taking its Fourier transform 

allows the separation of source and filter information. Glottal excitation is usually 

described by high index cepstra, while the low index models the vocal tract. 

Therefore these coefficients provide a compact representation of the spectral 

envelope and can be considered uncorrelated. The differences of spectrum computed 

over the phoneme /a/ using the two techniques and the deviations from the true 

envelope are illustrated in Figure 3.8. 
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 𝑐 𝑛 = ℱ!!{log ℱ{𝑠 𝑛 } } = log
!!!

!!!

𝑠 𝑛 𝑒!!
!!
! !"

!!!

!!!

𝑒!
!!
! !" (3.5) 

 

 
Figure 3.8: LPC and Cepstral envelopes versus DFT spectrum and True envelope. 

 

Numerous techniques have been developed to improve capabilities of the earliest 

formant tracking algorithm proposed by Schafer and Rabiner (1970), based on an all-

pole model characterized by second-order digital resonators. An adaptive and very 

robust tracking technique is proposed in (Mustafa and Bruce, 2006), but it presents a 

computational load too high for real-time, because it works with a single sample 

increment windows. An Unscented Kalman filter algorithm that provide a finely-

grained tracking of the formant parameters is proposed in (Lazzarini and Timoney, 

2009), while a Kalman-based autoregressive moving average modeling and inference 

method is presented in (Mehta, Rudoy, and Wolfe, 2012). As mentioned in the 

previous section the formant tracking presents implicit challenges, and for high pitch 

singing voice the situation can be even more critical since as little as one harmonic 

component may fall in the region of the first formant, making the spectral peak 

detection nearly impossible. 

Multidimensional descriptors deriving from physical and perceptual models 

provide a global representation of the voice production process, and regardless of the 

final application, yield to better recognition, tracking or control performances when 

compared to the use of a set of scalar descriptors. The LPC, MFCC and Perceptual 

Linear Predictive (PLP) coefficients find large application in voice-based systems. 

The latter two are more recent and usually provide better representation and 

performances. The speech signal is usually preprocessed using a first order high-pass 

filter, which improves the overall Signal-to-Noise Ratio (SNR). This stage, called 
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pre-emphasis, is described in Equation 3.6, where 𝛼 represent the preemphasis factor, 

typically equal to 0.97. 

 

 𝑠 𝑛 = 𝑠 𝑛 − 𝛼𝑠[𝑛 − 1] (3.6) 

 

The Linear Predictive Coding coefficients computation is based on the linear 

prediction that is used not only for analysis of speech, but also for compression and 

synthesis (Itakura and Saito, 1967) (Markel, 1972) (McCandless, 1974). This 

analytical technique is based on the hypothesis that the voice production apparatus is 

a source-filter physical model where the glottal oscillations are the independent 

source, and the vocal tract resonances are modeled as a combination of time-invariant 

filters. The linear prediction coefficients 𝑎! providing the best prediction 𝑠[𝑛] based 

on the past 𝑃 samples (which determines the order or number of the LPC 

coefficients), as in 3.7, are found minimizing the prediction error in 3.8. A single 

optimum solution can be always obtained using the covariance or the autocorrelation 

methods. The residual 𝑒[𝑛] estimates the glottal pulses, the coefficients 𝑎! represent 

an all-pole model which simplifies the voice production system. The resulting LPC 

spectrum is obtained from the transfer function in Equation 3.9. 

 

 𝑠[𝑛] = 𝑎! ⋅ 𝑠[𝑛 − 𝑘]
!

!!!

 (3.7) 

 

 𝐸 = 𝑒[𝑛]!        where      𝑒[𝑛] = 𝑎! ⋅ 𝑠[𝑛 − 𝑘]
!

!!!

− 𝑠[𝑛]
!!!

!!!

 (3.8) 

 

 
𝑆(𝑧)
𝐸(𝑧)

=
1

1 − 𝑎! ⋅ 𝑧!!!
!!!

 (3.9) 

 

The Mel Frequency Cepstrum Coefficients represent the spectral envelope of 

sounds, which is a salient component of the timbre perception (Davis and 

Mermelstein, 1980). The MFCC provides a perceptual modeling by parameterizing 

the shape of the sound, voice in this case, after warping the frequency axis to better 

represent the frequency perception in the human auditory system. They provide 

salient aspects of the spectral shape of a sound in a relatively small set of coefficients. 

The computation is similar to the cepstrum in Equation 3.5, but the magnitudes of the 

DFT are converted to a smaller number of coefficients, typically 22 for 8KHz and 40 
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for 16KHz sampling rates, through a bank of 𝑅 triangular Mel filters. The following 

IDFT is replaced with a truncated Discrete Cosine Transform (DCT) to further reduce 

the number of coefficients to typically only 13. Equations 3.10-12 show the MFCC 

computation starting from the DFT of a window 𝑆(𝑘), where 𝑉![𝑘] represents the 𝑟!! 

triangular filter weighting function, bounded within the DFT indexes 𝐿! and 𝑈!. 𝐴! is 

the normalization factor so that a flat DFT spectrum generates a flat Mel spectrum 

too. Figure 3.9 illustrates the Mel scale triangular filter bank, with applied 

normalization factor 𝐴! in the bottom plot. 

 

 
Figure 3.9: Example of Mel triangular filter bank with (top) and without (bottom) applied 

normalization factor. 

 

 𝑀𝐹[𝑟] =
1
𝐴!

𝑉![𝑘] ∙ 𝑆(𝑘)
!!

!!!!

 (3.10) 

 

 𝐴! = 𝑉![𝑘] !
!!

!!!!

 (3.11) 
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 𝑀𝐹𝐶𝐶[𝑚] =
1
𝑅

log  (𝑀𝐹 𝑟 ) ∙ cos
2𝜋
𝑅

𝑟 +
1
2
𝑚

!

!!!

 (3.12) 

 

The Perceptual Linear Predictive coefficients provides another compact 

representation of speech signal, and it uses more advanced psychophysics of the 

human hearing to compute an estimation of the auditory spectrum (Hermansky, 

1990). At first the power spectrum of a voice frame is warped onto the Bark scale, 

using the approximation function in 3.13 in which 𝜔 = 2𝜋 𝑇 represents the angular 

frequency, and then convolved to the power spectra of the critical band filter, in order 

to reproduce the human ear frequency resolution. Then the equal-loudness pre-

emphasis compensates the uneven loudness perception at different frequencies, using 

the function in 3.14, which approximates the curve in Figure 3.6. The intensity to 

loudness conversion is approximated with the cube root, and then the output of the 

inverse DFT is fed into a linear predictive model, which provides an autoregressive 

all-pole model representing the auditory spectrum. These coefficients are in general 

more robust than MFCC for speaker-independent voice based applications because 

their computation use a 5th order all-pole model that is effective in isolating the 

auditory spectrum from speaker specific details. Most of the descriptors described in 

this section are susceptible to alterations of the short-time spectral values of the 

communication channel transfer function. However steady-state spectral factors have 

almost no impact on human perception of voice (Summerfield and Assmann, 1989). 

Therefore Hermansky developed the RelAtive SpecTrAl (RASTA) technique 

consisting in the utilization of a set of band-pass filter, one for every sub-band, in 

order to smooth rapid noise variations and to eliminate offsets (Hermansky et al., 

1991) (Hermansky and Morgan, 1994). The resulting RASTA-PLP coefficients result 

in higher robustness to linear spectral distortions. 

 

 Ω 𝜔 = 6 ∙ ln 𝜔 1200 𝜋 + (𝜔 1200𝜋)! + 1  (3.13) 

 

 𝐸 𝜔 =
(𝜔! + 56.8  E6)𝜔!

(𝜔! + 6.3  E6)(𝜔! + 0.38  E9)(𝜔! + 9.58  E26)
 (3.14) 

 

Regardless of the category of features used, voice and speech processing often 

extend the coefficient vector adding the delta and acceleration (also known as delta-

delta) coefficients, in order to provide an implicit trajectory modeling of each 
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coefficient. These are computed with the Equations in 3.15 and 3.16 respectively, in 

which 𝑐! represents each coefficient at time 𝑡, and the delta window 𝛿 is usually 

equal to two. The LPC, MFCC and PLP analyze primarily the resonances of the vocal 

tract, which, as explained earlier, characterize mostly voiced phonemes, while they 

hold less information about unvoiced sounds. Moreover considering additional 

information such as the phase or the phonation mode does not improve the 

performances of voice-based HCI system (O’Shaughnessy, 2003), even though these 

sonic characteristics are perceivable by the human auditory system. 

 

 Δ! =
𝑖(!

!!! 𝑐!!! − 𝑐!!!)
𝑠 𝑖!!

!!!
 (3.15) 

 

 ΔΔ! =
𝑖(!

!!! Δ!!! − Δ!!!)
𝑠 𝑖!!

!!!
 (3.16) 

3.2 Voice as source of gestural musical control 

In line with the overall principles and requirements for VCI4DMI of Section 2.3.1, 

we will investigate and design a mapping method that does not require specific vocal 

timbre to operate, but that can be automatically adapted to the user vocal control 

preferences and style. Only a small fraction of voice timbre range can be represented 

by phonemes or onomatopoeic description, therefore, with the exception of some 

demonstrative examples, we avoid written transcription of the vocal sound. We 

generalize defining only two categories of vocal sounds, vocal-gesture and vocal-

posture, which are sufficient to describe the user interaction with the system for 

training and performance purposes. In body language non-vocal communication the 

terms gesture and posture describe movement and static position respectively. These 

identify also the presence or absence of a dynamic temporal evolution. A gesture can 

be considered the temporal evolution across two or more postures. In the context of 

musical instruments, the term posture is not common, while the term gesture 

identifies any motor action of the performer that expresses a musical intention, later 

realized into sound by the instrument. The gesture strongly depends on the instrument 

interface input modality. Therefore we define the two categories as follow: 

• a vocal-gesture is a vocal sound in which timbre dynamically varies over 

time by an arbitrary speed and amount; 

• a vocal-posture is a vocal sound which timbre does not change over time. 
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By the definition, only continuant vocal sound, color coded in blue in Figure 3.5, can 

represent a vocal-posture while occlusive sounds cannot be sustained over time. 

Vocal-gestures can contain any variation across continuants and occlusive vocal 

sounds, presenting wide timbre variation or just nuances. It can be a slow gliding 

from a timbre to another one or a more abrupt variation, the trajectories between and 

across sounds can have any form. We aim for a rational and obvious vocal-control, 

thus we design the VCI4DMI to respond to vocal-postures with steady instrument 

parameters, and to vocal-gestures with parameters variation determined by the 

specific mapping. The same applies for the GC that we describe in this Chapter, 

which convert the vocal sounds into intermediate signals for mapping purposes. 

Silence can be considered as a special case of vocal-posture. However the natural 

control and low cognitive complexity characteristics that we aim to bestow to the 

VCI4DMI, require that the GC output, as well as any DMI parameters and controls, 

are hidden to the performer who thinks, controls and gets response from the system 

only in sonic form. This approach is akin to the way we interact with our vocal 

production apparatus, which we essentially extend adding the transparent chain made 

out of the vocal interface plus the instrument. 

The two spectrograms in Figure 3.10 are related to a vocal-posture and a vocal-

gesture. In particular the posture is related to the /i/ phoneme, while the gesture 

represent a timbre gliding across different vowels. 

 

 
Figure 3.10: Spectrogram of an example of vocal-posture (top) and vocal-gesture (bottom). 
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The spectrogram, which represents the magnitudes of the DFT, provides an 

interpretable graphical representation of the raw sonic data, and from a visual 

analysis it is possible to observe that: 

• in vocal-postures there are slow rate amplitude and frequency fluctuations, 

minor irregular burst variations and short-time noise-like variations. These 

are beyond the vocalist’s control, who is perceptually producing a steady 

timbre; 

• in vocal-gestures the different patterns representing different vocal timbres 

are evident as well as the presence of high redundancy in the data 

representation. In the dynamic transitions the identification of independent or 

multidimensional variations is not trivial. 

 

These observations are valid also for more compact representation of the voice audio 

signal such as sequences of low-level features vectors computed with the techniques 

described in Section 3.1.3.2. Therefore naïve mapping of one or more of these 

features to any instrument parameter for musical control will present a noisy behavior 

over vocal-postures, and strictly correlated control of multiple parameters, similar to 

a one-to-many mapping, over vocal-gestures, neither of which is inline with the 

mentioned design requirements and principles. 

Extracting a set of robust and independent continuous signals from the voice is 

the main challenge we face here. The robustness condition is important for the vocal-

postures because their noisy components should be attenuated, if not rejected, in the 

GC output signals. The independence, or at least, statistical uncorrelation, of the GC 

outputs is the key factor in providing real multidimensional control, which embed the 

performer’s musical control intention. Distinct users may present perceptible 

differences in their vocal tracts, and considerably distinct styles and timbre ranges in 

their vocal-gestures and vocal-postures. Consequently, a fixed algorithm 

implementing the GC functionalities can offer only a sub-optimal solution. Our goal 

is rather to find the optimal solution for each case through the design of an adaptive 

and generative mapping algorithm that retrieves the necessary information and 

generates a model from a set of training data provided by the user. This can also 

implicitly confer adaptation to other context-dependent issues such as the frequency 

response of the microphone, background acoustic noises, communication channel 

noises and offsets. In the setup phase, the user intervention and required expertise 

should be minimal and limited to produce simple training data, in order to set a low 

system entry barrier and high transparency. This implies that the ML techniques used 

must be unsupervised or self-supervised. However, the final system should present a 
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high ceiling, allowing expert users to change training and functional settings for 

additional mapping personalization, but also for further development and exploration 

of the contributions of this work. 

3.2.1 Training data 

The training data for the GC consists of recordings of several instances of consistent 

vocal-gestures and a set of vocal-postures. The latter should comprise all the 

continuant vocal sounds present in the gesture. Each instance of vocal-gesture should 

contain dynamic timbre variation, across an arbitrary number of vocal sounds. The 

GC component of the VCI4DMI is entirely determined from knowledge extrapolated 

from this user provided training data set. The temporal unfolding of the gestures in 

the various instances is not important and can vary. Temporal information is 

discarded in a later stage since we focus mainly on the geometrical and spatial 

unfolding of the gestural data. The rate or speed of variation in the gesture will 

instead have an impact since we sample the voice features at regular intervals. Both 

excessively slow and fast variation present shortcomings, as we will analyze later in 

the chapter, but relatively slow variation is preferred, since this provides more 

detailed representations of the gesture. We do not set a minimum amount of training 

data, however ML techniques benefit from larger training sets because they can refine 

and increase the complexity of the model. Therefore a higher number of gesture 

instances and longer duration or postures are likely to provide better GCs. 

A basic example of training data is a vocal-gesture comprising only a glide 

between the vowels /a/ and /i/, to be presented in any temporal order in the different 

training instances. Therefore the comprised vocal-posture will be related to the steady 

/a/ and /i/ timbres. A more complex example is represented by gestures varying 

within the entire vowel space, with the associate postures represented by the 

collection of all steady vowel sounds. In the first case we expect the adaptive and GC 

to find a simple mono-dimensional control space in the data, while in the second the 

number of independently controllable quantities should be at least two-dimensional. 

3.2.2 Parametric features computation and selection 

The aim of computing robust and independent signals from the voice can be pushed 

upstream to the low-level features computation. Therefore we introduce prior study 

on which features to compute, with the related analytical settings, to better represent 

the requirements related to postures and gestures. In the works presented in Section 
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2.2 there is a lack of research-based motivation related to the choice of voice low-

level features, which is instead often based on common practices in voice processing. 

Exceptions are found in the works of Loscos and Aussenac (2005), and of Stowell 

and Plumbley (2008). The first presents a preliminary study to identify the two 

features that better describe and implement a simple and well defined mapping 

problem. The second presents a more complex study, which analyzes a database of 

about 10 hours containing speaking, singing and beatboxing, and it considers a larger 

set of audio descriptors to identify robustness and amount of extra information that 

each feature carries. Both works present numerical and qualitative proof of the 

improvement given by the prior study on the low-level features to consider in the 

related voice-controlled systems. Here we push forward this approach in two 

directions: 

• perform a study on the features based on the specific data from a single 

performer; 

•  extend the study to find the optimal feature computation settings and 

options. 

 

Computational settings such as the sampling rate, the window size, and the step 

size, determine the computational cost and the extraction rate, but they also have an 

impact on the numerical and statistical result of the analysis of the scalar features. If 

we consider the vector of coefficients generated by the LPC, MFCC, and PLP, we 

find that the result of the analysis depends also on the value assigned to the pre-

emphasis factor and to the order of the computed coefficients vector. Changing the 

order corresponds to a modification or increasing complexity of the underlying model 

to estimate. For the LPC a different order implies a different number of poles in the 

model of voice production. In the MFCC and PLP different orders, but also different 

sampling rate, determines a different number and central frequency of the filter banks 

approximating the auditory system. Therefore the individual coefficient may capture 

different aspect of the voice signal. Although there are default values for these 

settings, there are no criteria to establish a priori which combination of settings can 

provide better results in specific cases. In different application domains such as the 

ASR, it has been demonstrated that an appropriate tuning of the computational setting 

can significantly improve the performances of the system (Sanderson and Paliwal, 

1997). 
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3.2.2.1 Quality metrics 

In order to identify the optimal settings, we need to define metrics and methods to 

measure numerically the result we obtain with different computational parameters. 

We assume we have 𝑃 vocal-postures in the training set, and for each window we 

compute a vector 𝐯 = [𝑣!, 𝑣!,… , 𝑣!] containing 𝐶 features or coefficients. With 𝑊! 

we identify the number of analysis windows in the vocal-posture with 

𝑝 = {1,2,… ,𝑃}. To measure the noisiness of each coefficient 𝑣!!! in the sequence of 

vectors representing each vocal-posture 𝐕𝒑 = [𝐯!!!, 𝐯!!!,… , 𝐯!!!!] we compute the 

Relative Mean Difference (RMD), which is a scale invariant measurement of 

statistical dispersion, described in Equation 3.17. Compared to the original formula 

we added the modulo operator in the denominator in order to avoid negative values of 

the RMD generated by 𝑣! with negative mean. The RMD in 3.17 provides an 

estimation of the noisiness, or robustness, of each scalar feature. Therefore we mark 

as noisy and reject from vectors 𝐯, those components 𝑣! presenting an average 

dispersion over the set of postures larger that a pre-defined threshold 𝑅𝑀𝐷!"#$!. 

 

 𝑅𝑀𝐷!!!! =
𝑣! 𝑘 − 𝑣![𝑧]

!!
!!!

!!
!!!

𝑊! ∙ 𝑣! 𝑘
!!
!!!

 (3.17) 

 

To measure the amount of non-redundant information in the vocal-gestures we 

measure the intrinsic dimensionality of 𝐕𝑮 = [𝐯!, 𝐯!,… , 𝐯!!], which is a matrix 

containing all the features vectors computed on all the frames of all the instances of 

vocal-gestures, for a total of 𝑊!  analysis windows. This estimates the real 

dimensionality of a manifold embedded in a parameter space with larger 

dimensionality. For example, measuring an intrinsic dimensionality equal to two 

means that the vocal-gesture data can be reduced to a flat surface, with arbitrary 

internal distribution, and therefore only two axes or components will be necessary to 

effectively represent unique gestural information. We tested several existing methods 

for the intrinsic dimensionality measurement on real and simulated data, and 

differences were noticed only in the decimal part of the result. However the 

correlation dimension (Grassberger and Procaccia, 1983) and the maximum 

likelihood (Levina and Bickel, 2004) methods showed better consistency and lower 

estimation error rate. The average of the two results determines our measure of the 

intrinsic dimensionality of the whole time series of feature vectors 𝑖𝑑𝑖𝑚(𝐕𝑮). In order 
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to obtain true estimations, features in 𝐯 computed with different techniques require 

range equalization to avoid large gaps in their absolute values. 

Given a specific configuration 𝑐𝑓!   of the setting for computing 𝐯, we measure the 

robustness and quantity of information, which we aim to maximize, with the quantity 

𝑄!"! in Equation 3.18, and we take it as an overall quality rating for each 𝑐𝑓! case. 

The first term of the Equation 3.18 estimates the quantity of non-redundant 

information embedded in the vocal-gestures 𝐕𝑮 by averaging the intrinsic 

dimensionalities measures with the two methods mentioned above. The second term 

of the Equation 3.18 estimates the robustness of the selected features computed over 

the 𝑃 vocal-postures by averaging the means 𝔼[𝑅𝑀𝐷!!!!] of the single features 𝑣! 

marked as non-noisy. 𝑅𝑀𝐷!"#$! is the upper bound for this quantity, which tends to 

zero in cases with minimal noise. The modulo and logarithm operators in the 

numerator remap the range to positive increasing values as the noisiness decrease. 

The normalization with the modulo of the logarithm of the upper bound prevents the 

quantity from diverging. In the quality rating 𝑄!!! we do not include the count of how 

many features, among the 𝐶 computed, are compliant with the RMD condition 

because this has no relevance and direct relation with the true intrinsic 

dimensionality. The threshold on the RMD is usually set to 0.5. On real data the first 

term usually ranges in the interval [2, 5], while the formulation of the second term 

produces results in the lower half of that range. Therefore the quality rating 𝑄!"! is 

intentionally unbalanced toward the first term, because the robustness condition has 

been already applied to the data, excluding the noisy features from the 𝑖𝑑𝑖𝑚(𝐕𝑮) 

estimation. However we still consider the overall RMD of the robust features in the 

𝑄!"! to promote configurations that further minimize the statistical dispersion. 

 

 𝑄!"! =
𝑖𝑑𝑖𝑚!" 𝐕𝑮 + 𝑖𝑑𝑖𝑚!"(𝐕𝑮)

2
+

log  
𝔼[𝑅𝑀𝐷!!!!]!

𝑃
log  (𝑅𝑀𝐷!"#$!)

  (3.18) 

3.2.2.2 Blind search algorithm 

The quality measure introduced above and the breadth-first blind search algorithm 

we describe in this section do not depend on the specific composition of the vectors 

𝐯. Our approach avoids prior decisions on feature selection, therefore we start 

considering a large set including those described in 3.1.3.2, with their delta and 
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acceleration coefficients. The exact dimensionality 𝐶 of 𝐯 depends also on the orders 

of the models estimated by the LPC, MFCC and PLP, which is one of the 

computational settings. To avoid a combinatory explosion of the cases to evaluate we 

vary the settings in limited ranges centered on the typical or default values. However 

the method we present here allows also deeper searches, impacting only the total 

search time. The blind search for optimal settings is performed offline, but in the final 

performance VCI4DMI system the features will be computed and used for mapping 

purposes in real-time. Therefore we favor settings that are computationally efficient 

such as integer power of two window sizes, rational ratios of the audio sampling rate, 

even number of Mel or Bark Bands. The computational parameters and the respective 

ranges we explore are: 

• Sampling rate – 16KHz is the common sampling rate in voice processing. It 

is a tradeoff between computational cost and information loss at higher 

frequencies. Modern CPUs are powerful enough to handle voice DSP 

processing even at higher sampling rates. The energy of the human voice is 

mostly concentrated in the band below 8KHz, but components are present at 

up to almost 20KHz. According to Monson (2011) the reasons for neglecting 

the band above 8KHz are mainly historical and physical, but also the higher 

frequency band may have perceptual significance. The sampling rates we 

consider in the search are [8, 16, 24] KHz, extending and reducing the typical 

considered audio band by 50%. 

• Window size – we consider only windows containing a number of samples 

equal to any integer power of two in the range [256, 4096], allowing efficient 

Fast Fourier Transform (FFT) computation without zero-padding. The value 

is also conditioned by the sampling rate and we limit the resulting audio 

frame to 256ms in length. Moreover the size of the window must be bigger 

than the step size. Values below 256 are not considered because the FFT 

frequency resolution is too low for the auditory scale frequency warping and 

related filter banks. 

• Step size – this value determines how frequently a feature vector is computed 

and directly impacts the computational load. In order to compare the 𝑄!"! 

quality ratings results we need to generate for each 𝑐𝑓! the same number 

vectors 𝐯 from the vocal-postures and vocal-gestures, otherwise the statistical 

measurements will present different accuracies and thus not be comparable. 

Therefore the value of the step size relative to sampling duration changes 

with the sampling rate but it provides a fixed step size in time. We perform 
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the search using a step size of 16ms, as motivated in the next subsection. 

However the user can change this value if necessary, also in the real-time 

VCI4DMI system. 

• Pre-emphasis – we explore four values of this parameter, in particular [0, 

0.31, 0.63, 0.97]. Typical values are 0 (no pre-emphasis) and 0.97. In the 

proposed range we explore also two additional values providing low and mid 

pre-emphasis. 

• Order – the number of LPC, MFCC, and PLP typically computed is in the 

range 12 to 14. We explore a larger span of values because this 

computational setting modifies the underlying estimated model, and the 

impact on the quality 𝑄!"! is noticeable. We consider the range [6, 24] taking 

only the even values, due to some optimization in the real-time feature 

extraction algorithm, and with restrictions on low Nyquist frequencies that 

limit the maximum number of filter banks on the MFCC and PLP.  

 

With the ranges described here we obtain 368 setting that we evaluate using the 

simple algorithm described by the pseudocode in Figure 3.11. The order is considered 

separately from the other settings into the inner loop. 

 
FOR every setting 

FOR every order 
  compute features on postures 
  measure average RMD over postures 
  identify noisy features 
  compute features on gestures 
  reject noisy features 

normalize features 
compute and store Qcf 

 END 
 compute Qcf w/ mixed LPC MFCC PLP order local max Qcf 
 find and store max Qcf and settings  
END 
find max Qcf and display best settings  
 

Figure 3.11: Blind search algorithm pseudocode for finding the voice low-level features 

computational parameters and the noisy features rejection maximizing the quality rating. 

 

We do not consider all possible combinations given by different computational orders 

in the feature vectors, because the total number of cases would spike to about 40,000. 

However changing the order setting into the inner loop, keeping track of all the 

partial result, and measuring the partial 𝑄!"! for LPC, MFCC, and PLP only, allows 

us to extend the search to extra cases given by heterogeneous orders mixing their 
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individual local maxima. Therefore the best settings may present individual and 

different order values for each low-level feature group. 

3.2.2.3 Preliminary study 

Before presenting the result of the search for the optimal computational settings, we 

briefly report the results of some preliminary studies that contributed to the 

refinement of the method and reduction of the search space. We started working on 

very large features vector that, in the worst case, had dimensionality of about 300, 

including delta and acceleration coefficients. Besides increasing the search time and 

the real-time computational load, the curse of dimensionality was an issue affecting 

the subsequent training stages in the GC. The level of redundancy in the original 

features set was excessively high. The set reduction we discuss here is based on the 

trends and observations on preliminary tests on a real voice data set, and not on prior 

theory-based decisions. The dataset was comprised of recordings collected from four 

individuals, two males and two females, using different microphones and ADCs. 

From each individual we collected 10 vocal-postures and 5 different vocal-gestures. 

The findings we report were later confirmed by analysis on a larger dataset, collected 

during the user evaluation described in Chapter 7, that we utilize later to present 

further results. 

The delta and acceleration coefficients, as expected, do not satisfy the RMD 

condition in nearly 100% of the case. All the 𝑣! present minor fluctuations over the 

vocal-postures as explained before. The delta coefficient, or the first derivative, 

which describes the rising or falling trend of the coefficient will in turn present a 

similar noisy behavior but with greater amplitude. The acceleration coefficients, or 

second derivative, follow the same behavior with even larger fluctuations. In Figure 

3.12 we show the average RMD and deviation of each coefficient and the variance in 

𝐯 over a vocal-postures set of an individual vocalist. In particular we display the cases 

with lowest and highest overall RMD over the non-noisy features. With the different 

color-coding we identify the features, delta and acceleration coefficients. It is evident 

that in both cases the average RMD value of any delta and acceleration coefficient is 

well beyond the 0.5 threshold, and in some cases also beyond vertical axis visible 

range, which is 20 times the threshold. Any reasonable increase of the threshold did 

not change the outcome and this has been observed for every vocalist dataset. 

Therefore we discard delta and acceleration coefficients from 𝐯 we obtaining a 66% 

dimensionality reduction. 
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Figure 3.12: Average RMD with standard deviation for features (blue), delta (red), and 

acceleration (green) coefficients for worst (left) and best (right) computational settings. Delta 

and acceleration coefficients are always marked as noisy features and discarded. 

 

The frequencies and amplitudes of the first four formants were computed and 

included in 𝐯 using three different tracking algorithms. These were in general non-

noisy, but in some cases we observed considerable jumps or discontinuities in their 

values, in both postures and gestures. These are due to false detections rather than 

variation on the formants spectral position. This behavior becomes more evident and 

frequent in environments with the presence of background burst noise or music. 

Therefore we removed formants information from 𝐯 since those tracking errors can 

be propagated and magnified in the system, generating detrimental unwanted and 

random responses at the VCI4DMI output. However the formants information is 

gathered from the spectral envelope, which is still represented and used in other 

coefficients such as the LPC and MFCC. In Figure 3.13 there are examples of the 

sudden jumps and discontinuities given by the formant tracking algorithms. In the top 

section of the figure, the third and fourth formants are tracked over a vocal-gesture, in 

which the vocalist glides smoothly between voiced vowels. In the bottom section the 

four formants frequencies are tracked over a vocal-posture. In both cases 

discontinuities and false detection are evident and they affect true tracking of the 

voice timbre. 

Short-time energy and pitch over vocal-postures turned out to be below the RMD 

threshold in most cases, and their tracking is not affected by significant 

discontinuities. However these features, related to the source part of the voice 

production apparatus, will be used and explicitly mapped to a side component of 

VCI4DMI prototype, as described in Chapter 6. Therefore to avoid overlapping 

controls of different parts of the system, we excluded these from the group of features 

considered for the generative mapping to DMI parameters. 
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Figure 3.13: Discontinuities in the results of formant frequency tracking for an example of 

vocal-gesture (top) and vocal-posture (bottom). The discontinuities represent a switch in the 

tracked formant and make formant frequencies unreliable features for mapping purposes. 

 

The band-pass filters in the RASTA-PLP tend to smooth rapid noise variations 

and to eliminate offsets, therefore this group of features shows the highest robustness 

over the postures. The approach is adaptive thus the filters require some time, 

approximately 3 to 5 seconds, to reach a stable state in presence of steady background 

noise or offsets. The implicit consequence is that the RASTA-PLP coefficients keep 

changing during this interval, even if the input audio signal is completely steady. This 

requires sacrificing a part of the training to bring the filters to a stable state. 

Nevertheless in real application scenarios the environmental noise conditions of the 

communication channel can change continuously and drastically. We observed that 

every time the feature computation is restarted after a break due to no voice activity, 

or after every pause of the vocalist, this adaptation process takes place again. 

Therefore the first few seconds of RASTA-PLP coefficients are inconsistent with 
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those computed later, and with the other features, which do not perform any 

adaptation. This has a direct impact on the VCI4DMI response consistency over time. 

Moreover the RASTA-PLP shows high redundancy to the PLP, and thus these are 

excluded from 𝐯. 

The remaining features are spectral moments, LPC, MFCC and PLP, with a 

number of coefficients between 22 and 76 depending on the order computational 

parameter. From further testing, involving measurements and real use cases on the 

early prototypes of the VCI4DMI and the larger final dataset, we observed that 

MFCC and PLP have a higher number of non-noisy coefficients, and carry the largest 

fraction of information in implementing the voice-gesture mapping, usually between 

70% and 95%. Moreover we tried to further reduce the feature set removing 

alternatively and concurrently the moments and the LPC. We evaluated the usability, 

with similar experiments to those described in Chapter 7. It emerged that on 

removing the four spectral moments the usability stayed the same, or in some cases 

slightly improved. We speculate that this may be due to the difference in the 

frequency axis, which is linear for the spectral moments and warped to the auditory 

scale in the MFCC and PLP. The numerical results and user evaluation presented in 

the following sections and chapters are thus based on vectors 𝐯 including only LPC, 

MFCC, and PLP. 

The fixed value of 16ms for the step size was determined by observations over 

results obtained for different step sizes. We did not directly compare the quality 

ratings for each step size, because as stated before these would not be statistically 

meaningful. The average smallest window we obtained in the optimal features 

computation settings is about 21ms. Therefore the 16ms step size is a tradeoff that 

guarantees the presence of window overlap of at least 25% in most cases, and avoids 

an excessive feature computation rate, which affects the real-time computational load. 

Finally we observed the effect given by different threshold 𝑅𝑀𝐷!"#$! values. 

Increasing it results in more features being marked as robust and passing through the 

selection stage, leading, as expected, to noisier DMI parameters generated by vocal-

postures in the final version of the VCI4DMI but also in the early prototypes. 

Lowering the threshold we observed that the few features not rejected had little 

correlation with the leading timbre variation in the vocal-gestures. The intrinsic 

dimensionality decreased but not drastically. However features representative of the 

voice always present a certain amount of noise over the postures as we discussed 

earlier in this chapter. Use case tests confirmed that with very low 𝑅𝑀𝐷!"#$! the 

system response, probed in different points of the interface processing chain, was 
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poorly controllable and presented several glitches. Values in the range [0.4, 0.6] 

provide the best tradeoff. 

3.2.2.4 Results 

The results presented here are based on the larger database that includes data from 

eleven different users. The size of the database is limited and thus we do not aim to 

draw generic conclusions valid across vocalists, but only recurrent trends and 

differences. Since we designed this method to be adaptive to voice characteristics of 

specific users, we expect and highlight differences across users’ optimal features 

computation settings. In Figure 3.14 we show the results in terms of the number of 

robust features, average RMD of robust features, intrinsic dimensionality, and quality 

rating 𝑄!"! for a specific user training data set over the 368 computational settings. 

For the 𝑄!"! we show both terms that contribute to the final value. In the search range 

the differences between minimum and maximum for all measurement are evident and 

significant. The value of the intrinsic dimensionality, which has the greatest influence 

on the quality rating 𝑄!"!, always presents a quasi-periodic trend as well as the 

number of robust features. This is due to the four nested loops in the search 

algorithm, with the inner one changing the order, and the outer changing the sampling 

rate. In general we observe that the highest spike in 𝑖𝑑𝑖𝑚(𝐕𝑮) determines the range in 

which the absolute 𝑄!"! maximum falls, which may not coincide due to the 

contribution of the term depending on the average RMD. However the 𝑄!"! 

maximum is usually in the close neighborhood of the 𝑖𝑑𝑖𝑚 𝐕𝑮  maximum. This 

indicates that generally the order and pre-emphasis, varied in the inner loops of the 

search algorithm, have a greater impact on the average RMD, while the other 

computational settings have a greater influence on the first term of Equation 3.18. 

This behavior is also noticeable in Figure 3.15, where we show a comparison 

between three quality ratings 𝑄!"!. The first two are computed with training data of 

the same user but with different vocal-gestures and vocal-postures. The third training 

data corresponds to the same gestures and postures in the first case, but the user is 

different. These correspond to the Table 3.1 entries with ID 11-1, 11-2 and 6-1, in 

which we summarize the search results on the larger dataset, mostly derived from the 

user evaluation of Chapter 7. In the table the ID entry is related to the user followed 

by the vocal-gesture numeric IDs. The table provides a comparison for similar vowel 

gliding gestures, with comparable amount of training data, across 11 different users. 
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For user 11 we provide results also for other training data sets containing a various 

vocal-gestures and vocal-postures. 

 

 
Figure 3.14: Number of robust features, average RMD of robust features over vocal-postures, 

intrinsic dimensionality over vocal-gestures, and quality ratings Qcfx showing the two 

contributing terms, computed over 368 features computation setting cases for a single data set. 

 

 

 
Figure 3.15: Quality ratings Qcfx and contributing terms for 368 features computation setting 

cases on training data set 11-1, 11-2, and 6-1. The Qcfx maximum, associated with optimal 

features computation settings and robust features selection, depends on the specific user 

vocal-gestures. 
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ID S.%Rate Win. Step Pree. LPC MFCC PLP idim RMD Qcf
1"1 16000 512 256 0.00 8~1 6~3 6~5 3.42 0.13 6.33
2"1 24000 512 385 0.63 12~1 12~4 12~4 3.57 0.18 5.90
3"1 24000 512 385 0.00 22~1 22~4 22~7 4.15 0.28 5.97
4"1 24000 1024 358 0.31 8~1 8~6 8~5 3.69 0.16 6.28
5"1 8000 512 128 0.00 6~3 16~7 10~5 4.76 0.25 6.71
6"1 24000 512 385 0.31 12~1 12~5 12~8 4.76 0.25 6.71
7"1 24000 512 385 0.97 22~3 18~9 14~7 3.88 0.24 5.89
8"1 24000 512 385 0.63 22~1 22~10 22~11 4.82 0.26 6.71
9"1 24000 512 385 0.63 16~1 16~7 16~5 4.54 0.28 6.35
10"1 24000 512 385 0.00 18~1 18~7 18~10 4.51 0.24 6.52
11"1 24000 512 385 0.97 22~1 22~9 22~9 5.11 0.25 7.11
11"1n 24000 1024 385 0.00 18~1 18~6 18~6 4.90 0.25 6.88
11"1N 8000 256 128 0.00 16~2 16~2 16~2 4.16 0.30 5.86
11"2 24000 1024 385 0.00 22~1 22~9 22~9 6.40 0.28 8.20
11"3 24000 512 512 0.00 14~1 14~4 14~5 4.88 0.19 7.22
11"4 24000 512 385 0.97 6~3 22~7 22~11 6.24 0.27 8.09
11"5 24000 512 385 0.97 8~1 16~5 20~7 5.70 0.34 7.26  

Table 3.1: Optimal features computation setting based on the maximum quality rating Qcf for 

13 cases. From left to right each column shows user-gesture ID, sampling rate in Hz, window 

size in sample, step size in sample, pre-emphasis value, order and number of robust 

coefficients for LPC, MFCC and PLP, intrinsic dimensionality for the vocal-gestures, average 

RMD for the vocal-postures, and Qcf value. 

 

In the outer most loop of the search algorithm there is the sampling rate 

variation, and in the intrinsic dimensionality trend, displayed in Figure 3.15, we 

observe three distinct segments related to different sampling rates. In general the 

8KHz sampling rate often results in a low 𝑄!"!, while within the 16KHz and 24KHz 

the maxima are usually very close. In general 24KHz best case slightly outperforms 

the 16KHz best case, also because with the largest Nyquist frequency we can 

compute up to two more coefficients in the MFCC and PLP. However for the real use 

cases we did not notice noticeable usability differences between the two sampling 

rates. From the numerical results in Table 3.1 and from the analysis of partial results 

per feature group we observe that windows of about 21ms usually provide the best 

results. The pre-emphasis values are varied since enhancing higher frequencies helps 

to increase the intrinsic dimensionality, but it also leads to higher average RMD. The 

order of the features is strictly dependent on the user, and usually higher orders 

prevail. The total number of robust feature is usually in the range [10, 20] with 

MFCC and PLP contributing the most. The robust LPC coefficients are only one to 

three, and these show a very low correlation with the robust MFCC and PLP. Thus 

we still include the LPC because the contribution to the intrinsic dimensionality is 
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often significant. Low index LPC and MFCC coefficients are usually the more robust, 

while for PLP coefficients low average RMD are spread across the vector. The values 

of the intrinsic dimensionality for the vocal-gesture 1 across the 11 users are usually 

between 3.5 and 5, consistent with the findings of Togneri regarding spatial 

trajectories of the human voice (Togneri, Alder, and Attikiouzel, 1992). User 11 is 

more experienced with the system and generated a larger amount of training data. In 

the five vocal-gestures from user 11 the intrinsic dimensionality is usually slightly 

higher due to better familiarity with the preparation of the training data. Moreover the 

vocal-gestures with ID 2 to 5 are more elaborate in terms of timbral variation than 

gesture 1, which includes only vowel sounds. 

The method presented here is designed to eliminate features that capture noisy 

aspect of the voice. External noise source captured from the microphone can cause 

larger dispersions to the some of computed coefficients. In real use scenario we 

suppose that the working environment is likely not quiet and at least feedback from 

the speakers is present at the microphone. In the Table 3.1 entry 11-1n and 11-1N the 

training data has additional background music with vocals and full ensemble 

instrument presence. In 11-1n we used two monitor speakers at distance 0.6m from 

the microphone and angles of 90° and 270°. The hyper-cardioid polar pattern of the 

dynamic microphone provides at those angles an attenuation of about 7dB. The 

average RMS acoustic output from the speakers was approximately 95dB SPL. This 

emulates a scenario worse than usual performance stage settings, in which monitors 

are at a longer distance and at an angle usually close to 180°, where the microphone 

attenuation is double. However in the recorded signal the level of the music was 

about 20dB below the voice. In 11-1N we mixed music artificially in the training 

sound files at 9dB below the voice peaks, a higher level representing borderline 

scenarios. In Figure 3.16 we show a detail of the spectrograms for the equivalent 

vocal-postures in 11-1n and 11-1N, in which the presence of a background music 

signal is clearly evident. In Figure 3.17 we present the quality ratings 𝑄!"! relative to 

the two training data set with noise. 

In 11-1n we observe only a small drop in the overall 𝑄!"! trend. The best 

computational settings are similar to the 11-1 dataset, but the null pre-emphasis and 

the larger analysis window clearly help to mitigate the presence of fast changing and 

pulsating music. In 11-1N the background noise level is higher and as expected 

results are remarkably different. The quality 𝑄!"! for every case is much lower and 

the number of robust features is low, only 6 satisfy the average RMD threshold 

condition over vocal-postures. The sampling rate of 8KHz produces better results 
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since the Nyquist frequency up to only 4KHz removes the higher band in which the 

loudness of the background music is equal to or higher than the voice volume. 

Further test on similar cases with high-level artificially added noise showed 

consistency. Therefore the method presented here can adapt the computing settings 

also to the environment conditions besides to the vocal tract characteristics of the 

user. The voice data we use to train the VCI4DMI for live performances is recorded 

with the presence of background sounds, as similar as possible to those generated in 

the performance. 

 

 
Figure 3.16: Spectrogram of examples of vocal-postures in training data set 11-1n (top) and 

11-1N (bottom) with clearly visible background noise component. 

 

 
Figure 3.17: Quality ratings Qcfx and contributing terms for 368 features computation setting 

cases on the training data set 11-1n and 11-1N with background noise. The Qcfx maximum and 

thus the optimal features computation settings change with the increase of the background 

noise, showing the method adaptability to the sonic environmental conditions. 
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3.3 Self-organizing gestures 

At this stage following after the method described above, feature vectors describe the 

instantaneous timbre of the voice in a high dimensional space. Noisy features have 

been already eliminated and the computation has been tuned to maximize the amount 

of information extracted from the voice. Any vocal-gesture 𝐕𝑮 = [𝐯!, 𝐯!,… , 𝐯!!], is 

therefore represented by a set of points bounded in an arbitrary convex shape with 

arbitrary distribution in the gestural space. This has high dimensionality equal to the 

number of robust coefficients 𝐶! in 𝐯. The next step is for the GC to compute from 

the gesture a number, that we address with 𝑀, of intermediate continuous parameters 

in the mapping space, providing the essential representation of the musical control 

intention expressed in a voice timbre variation. This transformation must be 

compliant with the conditions over vocal-postures and vocal-gestures described in 

Section 3.2, demanding for steady and continuous GC outputs respectively. Thus we 

present next an adaptive method to model a GC from the training vocal-gestures. 

In the literature we find three common strategies: direct mapping of all the low-

level features to DMI parameters, mapping of a subset of them only, or PCA 

projection and direct mapping of a reduced number of principal components. The first 

approach is likely to provide a redundant control, and the second to present a prior 

removal of features that can be representative. The third considerably improves over 

the previous two, linearly combining the features to a reduced set, in order to map to 

the DMI only the most discriminative components found in the data. However the 

dynamics between input voice and GC output are generally not considered. A vocal-

gesture consists of an arbitrary path between two coordinates in the high dimensional 

space. The proposed approaches simply map the coordinates to DMI parameters, 

without considering that in the multidimensional space the training data is likely to 

have non-uniform density in different regions. There is no guarantee that a perceptual 

linear glide between two timbres maps to a linear variation of the GC outputs, which 

we aim to address as well in our approach. Therefore the ideal GC transformation 

𝑔:𝐑!! → 𝐑! should preserve the manifold structure embedded in 𝐕𝑮 while 

rearranging the samples of the training vocal-gestures in uniformly distributed regular 

shapes. Low density or empty sub-regions determine combinations of the GC output 

beyond the user’s reach with vocal-gestures consistent with those provided for 

training. 
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3.3.1 Self-organizing maps as a gestural controller 

To complete the VCI4DMI front-end processing implementing the GC, a non 

conventional application of the Kohonen SOM (Kohonen, 1982) appears to be an 

appropriate technique to find the desired transformation between the gestural data 

space and the mapping space 𝑔:𝐑!! → 𝐑!. The SOM is a particular ANN trained in 

an unsupervised fashion, and it is commonly used to generate a two- or three-

dimensional representation, called a map or lattice, of high dimensional data. The 

SOM lattice is a 𝑀-dimensional hypercube composed by (𝑟!"# ∙𝑀) output nodes 𝑂!, 

each associated with a weight vector 𝐰! = [𝑤!,𝑤!,… ,𝑤!!], where 𝑟!"# is the 

resolution of the SOM, defined as the number of nodes on each axis. The preservation 

of the topology of the input data is a peculiar characteristic of the SOM weights, 

which makes this technique suitable not only for recognition, but also for the 

organization and graphical display of large amounts of data. SOM finds application in 

the sound domain for classification, visualization, data mining and audio retrieval as 

presented in the survey of Ness and Tzanetakis (2009). The authors also include 

applications for instrument interfaces and interactive music systems. In these, the 

SOM is used to organize collection of sounds in a low dimensional map, which are 

then retrieved and reproduced in real-time by linear one-to-one mappings of sensor 

signals to the SOM lattice coordinates. The dimensionality of the map and sensor 

signals is always two except in (Odowichuk and Tzanetakis, 2012), which represents 

a rare case of a higher dimensional SOM application in this field. Besides 

dimensionality reduction and topology preservation, which implies local and global 

neighborhood preservation in the lower dimensional representation of the data, the 

SOM algorithm implicitly provides adaptation to the different densities that the data 

may have in different sub regions of the original data. In Figure 3.18 we show an 

example with the 2D PCA projection of the data and the super imposition of the 2D 

SOM lattice by plotting the weights of the output nodes and by connecting the 

neighbors. It is evident that the weights of the SOM output nodes follow the shape 

and topology of the most discriminant components of the training data, but these are 

also displaced according to the density of the data, which is far from being uniform. 

We propose to train the SOM with the data 𝐕𝑮 and use the output lattice as a GC, as 

illustrated in Figure 3.19. When new high dimensional input vector 𝐯𝒏𝒆𝒘 =

[𝑣!, 𝑣!,… , 𝑣!!] of voice features is used to query the SOM, the response is the index 

of the node with the closest weight 𝐰! to 𝐯!"# in the 𝐶! Euclidean space. 

Normalizing the relative lattice indexes to the range [0, 1] we obtain the GC 
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intermediate output 𝐠𝐜𝒐𝒖𝒕 = [𝑔𝑐!,𝑔𝑐!,… ,𝑔𝑐!] that can be used for mapping 

purposes, as described in Equation 3.19 and for the 2D case. In 3.19  represents 

the Euclidean distance operator, 𝑖 and 𝑗 are the indexes of the 2D grid, and the 

number of nodes for each dimension 𝑟!"# serves as the normalization factor. In 

general we associate to each output node 𝑂! a 𝑀-dimensional normalized index 

vector 𝐢𝐝𝐱!. 

 

 
Figure 3.18: An example of SOM training data projected onto the first two principal 

components and normalized to the range [-1;+1] (left) and resulting trained SOM output 

lattice weights with neighborhood links superimposed to the training data (right). 

 

 
Figure 3.19: Illustration of the use of the SOM lattice as a Gestural Controller in 2D. 

 

 𝐠𝐜𝒐𝒖𝒕 ≜
argmin

!,!
𝐰!!,! − 𝐯𝒏𝒆𝒘

𝑟!"#
 (3.19) 

 

The use of the SOM to implement a GC, in the way we described above, realizes 

the transformation 𝑔:𝐑!! → 𝐑! we target because of the following characteristics: 
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• the number of GC output signals 𝑀 is lower than the 𝐶! robust features 

computed from the voice, performing the necessary dimensionality 

reduction to extract non redundant control signal; 

• the topology of the original input space is preserved so that a continuous 

trajectory in the higher dimensional vocal features space will be 

converted to discontinuity free GC output signals; 

• the non-linear transformation of the dynamic range of the features to the 

GC output signal, estimated by the non-uniform density found in the 

training vocal-gestures, provides the necessary compression/expansion 

to obtain a pseudo-linear response to voice timbre variations. 

3.3.1.1 SOM shortcomings 

There are several intrinsic shortcoming in the standard SOM learning algorithm that 

need to be addressed here, because the outcome illustrated in Figure 3.18 and the 

simultaneous occurrence of all the three characteristics mentioned above are very 

unlikely in real scenarios. In a similar application for the remapping of voice to the 

timbre of instruments (Stowell and Plumbley, 2010) the SOM performance is 

considered unsatisfactory. The author describes the mapping result as inconsistent 

due to different input-output relationship obtained for every training instance with 

identical training set, and the control performances are poor and messy. 

The SOM is an unsupervised ML technique, but the result of the training still 

depends on several user-defined settings: dimensionality and resolution of the output 

lattice and the initial and final values of the learning and attraction rates. The 

orientation of the lattice related to the data coordinate system is completely not 

determined and is likely to change at every training instance. Distortion in the global 

topology preservation such as folding, twisting, and discontinuities of the output 

lattice are common, as are failures in the local topology preservation. In Figure 3.20 

we illustrate typical examples of SOM topology distortion. These characteristics of 

the standard SOM training method may be harmless for classification or recognition 

purposes, but can be lethal when the SOM lattice is used as a continuous, non-linear, 

and discretized representation of the training data set, as we aim in out application. In 

particular the topology distortions that frequently occur in the standard SOM cause: 

• non monotonic GC outputs in response to monotonic trajectories in the 

gestural data space due to lattice twisting; 
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• discontinuities and jumps in the GC output due to lattice folding and 

edges curling, which place nodes nearby in the gestural space even if 

their relative SOM grid positions are far apart; 

• minor inconsistency of the gesture to GC output relationship due to local 

topology distortion, determined by the wrong relative position of a single 

node in relation to its nearest neighbors. 
 

 
Figure 3.20: SOM output lattice topology distortion examples related to edge folding (top 

left), severe local distortions (top right), lattice twisting (bottom right), edge curling with 

folding (bottom left), displaying lattice weights superimposed to the training data normalized 

principal components. 

 

Excessive or poor values of the learning and attraction rate chosen for the training are 

among the causes for topology distortion and poor model fitting. A low 𝑟!"# results 

in a coarse representation of the data, while if too high local topology distortions are 

likely. Therefore there is a tradeoff between high-resolution and continuity of the 

SOM lattice. The output here is intrinsically discrete due to the finite number of 

nodes, therefore the concept of “continuity” has to be considered as mapping of 
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vectors close in the input manifold to the same or adjacent SOM nodes. One of the 

main causes of global topology distortions is the dualistic nature of the SOM, which 

simultaneously reduces the dimensionality and preserves the topology (Kiviluoto, 

1996). The selection of the value of 𝑀 considerably smaller than the embedded 

dimensionality forces the SOM algorithm to perform a severe dimensionality 

reduction task, which usually results in folding, twisting, or curling of the lattice. 

The proposed SOM modified algorithm, that we call Self-Organizing Gestures 

and introduced in the next section, addresses drawbacks of the SOM that prevent the 

use of the lattice as a GC. Moreover since we aim to minimize the user interaction in 

the VCI4DMI setup, we derive the appropriate SOM settings directly from the 

training data that help to further reduce the probability of shortcomings appearing in 

the trained lattice. The SOM issues discussed in this section are also observed also in 

three or higher dimensional output lattices. In the chapter we will display mostly 2D 

cases because they are easier to visualize and interpret. 

3.3.1.2 Self-organizing gesture training algorithm 

Before training the SOM, we introduce a prior step to reduce the number of 

dimension in 𝐕𝑮 to a number equal to the integer part of 𝑀 = 𝑖𝑑𝑖𝑚 𝐕𝑮 . We thus 

free the SOM from the dimensionality reduction task, which is one of the main 

sources of drawbacks of the SOM method used for GC, and we use it only to find the 

non-linear transformation between two iso-dimensional spaces. This approach is 

comparable to the isometric SOM (Guan, Feris, and Turk, 2006), which showed 

benefits in a different domain such as 3D hand posture estimation. A variety of 

methods have been proposed in the literature for dimensionality reduction, but a 

technique outperforms others only if specific characteristics are found in the data 

(Van Der Maaten, Postma, and Van Den Herik, 2009). In general advanced 

dimensionality reduction techniques provide only a small improvement over simple 

techniques such as PCA. Since features vectors are computed from the voice every 

16ms, we observe that gestures are likely to produce manifold, or embedded shapes 

in the high dimensional space. To make up for the discarded temporal information in 

𝐕𝑮, we want to preserve at least locally and globally the pairwise distances between 

the original space and lower dimensional space, measuring the distance along the 

manifold. The orthogonal linear transformation offered by PCA in the presence of an 

embedded manifold corrupts the original data organization if the dimensionality 

reduction is excessive. Therefore we chose the Non-Linear Dimensionality Reduction 

(NLDR) Isomap (Tenenbaum, Silva, and Langford, 2000) which is a classical Multi 
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Dimensional Scaling (MDS) that uses the geodesic distance instead of the Euclidean. 

The low-dimensional Isomap data reconstruction respects the geodesic distance, 

which is measured along the manifold, of the original data, and the technique can 

discover manifolds of any dimensionality. Moreover for Euclidean manifolds the 

Isomap algorithm ensures asymptotic convergence to the real structure of the data. As 

in most of the dimensionality reduction techniques, also Isomap ranks the 

components of the lower dimensional reconstruction by their variability or quantity of 

discriminative information. Effective dimensionality reduction was also obtained 

with the Locally Linear Embedding (LLE) technique (Roweis and Saul, 2000), which 

has a lower computational complexity, but it presents drawbacks with low amount of 

training data, because it requires high density on the embedded manifold. After the 

NLDR the training data 𝐕𝑮∗, with 𝑀 dimensional entries 𝐯∗ = 𝑣!, 𝑣!,… , 𝑣! , are 

centered to the axis origin and normalized to the range [-1, +1]. 

The dimensionality of the SOM is set to 𝑀 and we relate the resolution and the 

number of training iterations to the number of elements in 𝐕𝑮∗, which is equal to the 

total number of analysis windows of the vocal-gestures 𝑊! , as in Equations 3.20 and 

3.21. The operator in     represents the nearest integer. The value of 𝑟!"# determines 

the complexity of the model we want to estimate therefore and in 3.20 we relate it to 

the size of the dataset. The more vocal-gestures we have the higher is the complexity 

of the model we can estimate without under-fitting issues. The relationship is 

logarithmic with base 𝑀, which implies that a 3D SOM requires a larger set of 

training data to increase the 𝑟!"# compared to a 2D SOM, although the resulting total 

number of nodes is higher. The factor 1.5 was derived empirically from experiments 

on the real vocal-gesture database in order to minimize topology distortions. 

Similarly the number of training iterations 𝑡!"# in 3.21 is related linearly to all the 

quantities involved in the SOM settings, determining longer training for more 

complex models. 

 

 𝑟!"# = ⌊1.5 ∙ log!(𝑊!)⌉ (3.20) 

 

 𝑡!"# = 𝑟!"# ∙𝑊! ∙𝑀 (3.21) 

 

The output lattice is composed of 𝑟!"#! output nodes 𝑂! with weights 𝐰!, 

organized in a uniform grid with 2! vertices. These are represented by values of the 

𝐠𝐜𝒐𝒖𝒕 in which each component is the minimum or maximum value, 0 and 1 

respectively in this case. Despite the specific DMI mapping, these particular 𝐠𝐜𝒐𝒖𝒕 
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will coincide with some case specific boundary of the DMI control. In order to 

provide a logical and natural vocal control we associate the 𝐠𝐜𝒐𝒖𝒕 of the vertices to 

the 2! gestural extrema a!" that better encompass the specific reduced vocal gestural 

space 𝐕𝑮∗. These are likely to coincide with the most diverse vocal timbre presented 

to the system for training. We define the 2! extrema a!" as those points in 𝐕𝑮∗ that 

maximize the sum of their inter-distances and the sum of their distances from the 

origin in Equation 3.22. 

 

 arg max
!!"!!,…,!!"!!!

𝑎! − 𝑎!!!
!!!

!!
!!!

2
+ 𝑎!

!!

!!!
 (3.22) 

 

The algorithm that searches for the 2! extrema is implemented with the following 

steps: 

1. for each quadrant, set equal absolute value boundaries orthogonal to each 

axis, and progressively reduce the quadrant extension until only one point a!" 

lays in each reduced quadrant; 

2. compute and store the sum of their inter-distances and the sum of their 

distances from the origin for the obtained 2! extrema a!"; 

3. rotate at fine angular steps the data around the origin and repeat 1 and 2, until 

the full data rotation is completed; 

4. pick the rotation angle 𝛼!"# that maximizes the sum of distances, apply the 

rotation to 𝐕𝑮∗ and store the obtained 2! extrema a!". 

 

In rare cases no points fall into a quadrant and thus we set the relative a!" to the 

origin. After finding the extrema we determine the convex hull that includes all the 

gestural training samples in 𝐕𝑮∗. In Figure 3.21 we show two examples of gestural 

training data before and the 𝛼!"#, highlighting the detected extrema in the four 

quadrants, and the convex shape bounding the training data. The example on top can 

be interpreted easily due to a lower number of training samples. 

The 𝐰! relative to the 2! lattice vertices are initialized at the position of the 

extrema a!". For the remaining 𝐰! the initialization has little or no effect on the final 

result, so we initialize them in a uniform grid within the gestural data to express 

graphically the effect we achieve with the proposed modified algorithm. The SOM is 

trained for 𝑡!"# iterations selecting a random 𝐯𝒓𝒂𝒏𝒅∗ from 𝐕𝑮∗ and updating all the 

weights 𝐰! with the standard rule described by Equations 3.23 and 3.24. 
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Figure 3.21: Examples of vocal-gesture training data after Isomap dimensionality reduction 

(left), rotation and extrema detection (center), bounding convex hull (right). 

 

 𝐰! 𝑡 + 1 = 𝐰! 𝑡 + 𝜇(𝑡) ∙ Θ(𝑡, 𝑘, 𝑧) ∙ 𝐯𝒓𝒂𝒏𝒅∗ −𝐰! 𝑡  (3.23) 

 

 Θ(𝑡, 𝑘, 𝑧) = exp
− 𝑂! − 𝑂! !

2 ∙ 𝜎(𝑡)!
 (3.24) 

 

In 3.23 and 3.24 𝜇(𝑡) and 𝜎(𝑡) are the learning rate and neighborhood parameter rate 

(or attraction rate) that decrease linearly with the time, Θ(𝑡, 𝑘, 𝑧) is the neighborhood 

function and 𝑧 is the index of the node 𝑂! with weights 𝐰! closest to 𝐯𝒓𝒂𝒏𝒅∗. The 

numerator of the exponential in the neighborhood function depends on the squared 

Euclidean distance between 𝑂! and 𝑂! in the SOM lattice output grid. We modify the 

standard training process by: 

• applying a slower update for the 𝐰! of the 2! vertices using the half of the 

learning rate 𝜇(𝑡); 

• forcing additional 2! weight updates iteration every time a tenth of 𝑡!"# has 

elapsed, using the 𝐯∗ associated with the extrema a!" instead of selecting 

random points, using 𝜇(𝑡) for all weights update, and half of the attraction 

rate 𝜎(𝑡) only for the 𝐰! of the 2! vertices. 

 

In addition at the end of the training process we associate to each node 𝑂! the number 

𝑈!, that we call mass, which is the count of the entries in 𝐕𝑮∗ to which 𝐰! is the 

closer weight vector. To avoid local topology distortions we select a high number of 
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training iterations 𝑡!"# by defining 3.21 in order to proceed with small updates. 

Therefore we can set an initial learning rate 𝜇(𝑡!) relatively small, and a final 

attraction rate 𝜎(𝑡!"#) relatively high, which prevent an excessive drifting of the 

node weights, and a value of 𝜇(𝑡!"#) at least one order of magnitude smaller than the 

initial. On the database we used for testing the best results were obtained with the 

values 𝜇 = [0.5, 0.01] and 𝜎 = [1.5, 0.5]. The modification of the SOM training we 

presented here aims to avoid topology distortions by applying forces at regular 

intervals that pull the SOM lattice vertices towards the extrema, as illustrated in 

Figure 3.22. This avoids the lattice getting folded, twisted, or curled, and at the same 

time provides a better overlap between the gestural data and the output node weights, 

which always fall within the bounding convex hull. Moreover the lattice vertices are 

stretched toward the gestural extrema maintaining the desired association between 

gesture and GC output at the boundaries. In Figure 3.23 there are two 2D and 3D 

examples of SOM training using the described method. In particular we show the 

weight initialization, the SOM at end of the training with weights linked to the 2𝑀 

von Neumann neighbors, to the (3! − 1) Moore neighbors, and with the 𝑈! mapped 

to the weights diameter. At the end of the training procedure if any topology 

distortion is detected in the output lattice, with the measurement described in Section 

3.3.1.4, the training procedure is repeated and eventually the value of 𝑟!"# dropped. 

 

 
Figure 3.22: SOM lattice weights initialization with the vertices at the gestural extrema 

position (left) and after the training (right), with illustration of the pulling forces implemented 

by the modified training algorithm. 
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Figure 3.23: 2D and 3D examples of SOM with weight initialized (a), weights after proposed 

training with links on von Neumann neighbors (b), with links on Moore neighbors (c), and 

with node mass mapped on the weight diameter (d). 
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3.3.1.3 Operational modes 

Here we describe the VCI4DMI interface component that implements the runtime GC 

using the gesture model derived from the Self-Organizing Gestures (SOG) training 

described above. The microphone signal is sampled and the stream is chunked into a 

sequence of overlapping windows. For each window a new set of 𝑀 intermediate 

parameters 𝐠𝐜𝒐𝒖𝒕 is computed as follow: 

1. calculate the vector 𝐯 with 𝐶 features using the optimal settings; 

2. apply the normalization factors to the different feature groups;  

3. reject the noisy coefficients keeping in 𝐯 only the 𝐶! robust features; 

4. perform the Isomap NLDR found from the 𝐕𝑮 to obtain 𝐯∗; 

5. normalize 𝐯∗ with the offset and scaling coefficient found from 𝐕𝑮∗; 

6. rotate 𝐯∗ by the angle 𝛼!"#; 

7. verify if 𝐯∗ is inside the convex hull bounding all 𝐕𝑮∗ entries; 

8. query the SOM output lattice with the new vocal-gesture sample 𝐯∗ and 

get the related 𝐠𝐜𝒐𝒖𝒕 response. 

 

There are several modes to implement steps 7 and 8. We provide more choices 

that may fit different gestural control requirements for the VCI4DMI or for different 

musical interfaces. Step 8 can be conditioned to step 7, executing it only if the 𝐯∗ is 

inside the convex hull. This can prevent, but it does not always guarantee, that voice 

timbres not included in the training set generate outputs, which can still fall 

somewhere within the region enclosing all the training gestural data. Another option 

we provide is the orthogonal projection of 𝐯∗ to the convex hull in case this falls 

outside the boundaries, and then always proceed with step 8. As an alternative we can 

completely skip step 7. By default in the VCI4DMI we skip step 8 if the condition in 

7 is not verified, but in real performances we obtained interesting interactions also 

with the projection mode, because it makes easier to obtain 𝐠𝐜𝒐𝒖𝒕 on the lattice 

borders that, as we will see later, determine different timbre extrema at the output of 

the controlled DMI. 

In step 8, the search on the SOM lattice that translates a vector 𝐯∗ into a vector 

𝐠𝐜𝒐𝒖𝒕 requires the definition of a search metric, a search area and a strategy to 

generate the output. The Euclidean distance between the data vector and the node 

weights 𝐯∗ −𝐰!  is the default the search metric, also because it is used as well to 

in the training phase. The output node 𝑂! is usually the one that minimizes this 

distance. For a typical recognition or classification task, search can be through the 
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whole lattice but in the VCI4DMI GC we deal with a temporal sequence of events, 

and therefore we prefer to limit the search to the (3! − 1) Moore neighborhood 

nodes of the output 𝑂! at the previous iteration. This approach presents two 

advantages: it reduces the computational load of the search, which becomes 

independent from the lattice size, and provides smoother transition in the GC output 

signals. In Figure 3.24 we illustrate this approach. The green circle is the output node 

at the previous iteration, the red circles represent the Moore neighborhood search 

space, and the smaller yellow circle is the 𝐯∗ relative position at current and future 

iterations. The normalized grid indexes 𝐢𝐝𝐱!, which is the GC output, of the node 𝑂! 

closest to 𝐯∗ will present a steep instantaneous transition if the search space includes 

the whole lattice. Instead shrinking the search to the Moore neighborhood we obtain a 

gradual and continuous variation of the 𝐠𝐜𝒐𝒖𝒕, which moves towards 𝐯∗ in 5 iterations 

along the path identified by the blue circles, generating 5 intermediate outputs 

compliant with the dynamics found in the training data. This in general does not 

introduce a delay between gesture and system response because the iteration rate is 

equal to 62.5Hz by default, and the voice timbre variation is usually slower. However 

for a SOM with high-resolution 𝑟!"# it is possible to increase the rate up to 250Hz in 

the current implementation, which is presented in Chapter 6. This approach helps to 

cope with possible unwanted noise captured by the microphone, which may otherwise 

generate instantaneous 𝐯∗ far from the path of the current vocal-gesture trajectory, 

because here we implicitly define for every node of the lattice a maximum delta in 

𝐠𝐜𝒐𝒖𝒕 values. 

The SOM output lattice is a discrete grid and the finite value of the resolution 

implies in turn a limited resolution in the GC output signals too. Therefore the 𝐠𝐜𝒐𝒖𝒕 

vector can assume a number of unique values equal to the number of output nodes 

𝑂!, which may be small for real-valued DMI parameters mapping purposes. 

Moreover the limited 𝑟!"# may determine a critical amplification of the vocal-

posture noise in the GC out. If a 𝐯∗ falls between two or more 𝐰! the closest output 

node may change continuously for minimal 𝐯∗ beyond the performer’s control, 

generating output signal fluctuations greater than what is being produced at the input. 

Therefore to avoid the two issues mentioned here we interpolate to obtain continuous 

output using the Inverse Distance Weighting (IDW) technique in Equation 3.25 and 

3.26, in which 𝜌 is the interpolation power parameter we usually set equal to 3. 

 

 𝐠𝐜𝒐𝒖𝒕 =
𝐪!(𝐯∗) ∘ 𝐢𝐝𝐱!!!

!!!

𝐪!(𝐯∗)!!
!!!

 (3.25) 
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 𝐪!(𝐯∗) =
1

𝐯∗ −𝐰!
! (3.26) 

 

 
Figure 3.24: Illustration of gradual gcout progression (blue) from the initial position (green) 

towards the target position (yellow) limiting at each iteration the search space to the Moore 

neighborhood (red). 

 

If we exploit the mass of the nodes 𝑈! that we computed at the end of the 

training procedure we can use as search metric the gravitational attraction force 

instead of the Euclidean distance, in Equation 3.27. Therefore the closer 𝑂! would be 

the node producing the strongest attraction at position 𝐯∗, and the same can be 

applied in case we use the IDW. The gravitational attraction depends on the 

Euclidean distance, decreasing with its square, and by the gravitational constant 

𝑔!"#$%. This search metric drastically changes the GC response to the gesture. In this 

situation Menzies (2002) argues that the interface main task, which behaves as a 

physical dynamic system, is a “dynamic control processing” rather than just an 

“instantaneous mapping”. The attraction force as search metric perturbs the gestural 

space creating hills where the mass is bigger, and valleys where the mass is lower, so 

that a different amount and perpetuation of gestural energy is required to change 

𝐠𝐜𝒐𝒖𝒕. The constant 𝑔!"#$% can be varied to change the dynamic response of the GC 

and, if negative, it provides a symmetric behavior, with repulsion forces rather than 

attraction. Theoretically with high 𝑟!"# all the 𝑈! should be equal, but this greatly 

increases the probability of getting topology distortions in the SOM output lattice. 

 

 𝐹!(𝐯∗) =
𝑔!"#$% ∙ 𝑈!
𝐯∗ −𝐰!

! (3.27) 
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3.3.1.4 Results 

In this section we present the results that measure the effectiveness of the 

algorithm we introduced to address the drawbacks when a SOM is used as a GC. A 

user based evaluation of the proposed voice GC versus the design principles and 

requirements is presented in Section 3.4. Here we focus on the local topology 

distortion, global topology distortions, spread of the node masses, and training 

repeatability. We compare the result with those obtained with the standard SOM 

training algorithm, using the same training data and settings such as lattice resolution 

and dimensionality, number of training iterations, learning and attraction rate. 

To detect local topology distortions, for every node we compute the difference of 

the 𝐰! with the 𝐰! of the (3! − 1) immediate neighbors. We compute the difference 

also between the relative pairs of grid index. Then for each pair 𝑂!-neighbor compare 

the sign of the 𝑀 components of the two differences. If all 𝑀 signs are different in at 

least one pair, we detect a topology distortion at the node 𝑂!. We further analyze the 

cases in which the number of local distortions is equal to the total number of nodes, 

because this is usually due only to a relative rotation of the 𝐰! grid in relation to the 

index axis grid, which may happen only with the standard training. When two or 

more local topology distortions are adjacent we detect a global topology distortion. 

Edges excessively curled may place the weights of two vertices dangerously close. 

This can cause discontinuities in the GC output and should be considered as a 

distortion. Therefore we measure the angle of every triplet of nodes along each edge, 

if the maximum and the mean are higher than 90° and 45° in 2D and 60° and 110° in 

3D we detect a global topology distortion. 

The proposed training procedure chooses a random 𝐯∗ point at every iteration to 

update the 𝐰!, as the original algorithm. SOM lattices trained with the same data are 

thus likely to be different. Therefore two GC trained with identical or similar gestural 

data are likely to produce very different responses. Our method aims to minimize this 

drawback too, and thus in the result we measure the training repeatability. This is 

computed as the mean of the distances between the 𝐰! of nodes 𝑂! with the same 

grid position that we get for two consecutive training iterations. Finally we measure 

the variance of the masses 𝑈!, which reveals the capability of the SOM output lattice 

to adapt to the local density of the training data. The results presented in Table 3.2 are 

the average values obtained on 26 test cases of real vocal-gesture training data. For 

each training data set we repeated the same measure 10 times. Moreover these 

measurements were repeated for the 2D and 3D cases, which are presented separately 
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in the table. For the topology distortions we report the percentage of trained output 

lattice affected by at least one distortion.  

 

Lattice'Measure'2D'cases'avg SOM SOG Δ
Local&Distortion 37.96% 0.05% 537.96
Global&Distortion 78.07% 3.07% 575
Repreatability 0.73 0.014 50.71
Mass&Variance 4.21 2.76 51.45

Lattice'Measure'3D'cases'avg SOM SOG Δ
Local&Distortion 20.76% 0.70% 520.06
Global&Distortion 54.23% 2.35% 551.95
Repreatability 1.09 0.126 50.96
Mass&Variance 3.82 1.38 52.44  

Table 3.2: SOM versus SOG local distortion, global distortion, repeatability, mass variance 

measurement comparison, averaged over 2D and 3D test cases. 

 

The results in Table 3.2 demonstrate that the SOG method we propose 

outperforms the standard SOM at least in the four aspects we report here, presenting 

negative deltas in every case. The drop in the local and global distortion percentage is 

drastic. For those few cases in which we get a distortion in the output lattice with our 

method, repeating the training likely provides a distortion free output. About half of 

the global distortions are due to curled edges and the other half is still mostly due to 

problems at the peripheral area of the lattice. For the standard SOM algorithm we 

generally do not get a distortion-free lattice because either one local or global 

distortion are present. The significant drop and the small absolute value of the 

repeatability measure indicate a consistent strategy to implement GC from training 

data. The mass variance measurement shows some considerable improvement too. 

Topology error and mass variance are generally lower in the 3D case because the 

lattice has a higher number of nodes, and thus can better accommodate the adaptation 

to the training data local shape and density. In the table the results are presented only 

for the 2D and 3D cases. The reasons for limiting the dimension 𝑀 to a maximum of 

three are related to cognitive overload and user feedback issue, and will be discussed 

in Chapter 6. 

3.3.2 Training data pre-filtering 

Two issues related to the content of the vocal-gesture training data 𝐕𝑮 were noticed 

during the training and measurement. Therefore we introduce two preliminary stages 
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of analysis and filtering in order to avoid these sources of potential corruption of the 

trained GC. 

First, entries not representative of any voice timbre can fall in 𝐕𝑮 if the vocal-

gesture sound file is poorly edited, cut, or if it contains silence. These entries often 

represent outliers far from the vocal-gesture region. At first the outliers determine a 

widening of the convex hull bounding the gestural data, and then they may be 

identified as gestural extrema, having a clear impact on SOM lattice training. The GC 

trained with outliers in 𝐕𝑮 is likely to present regions of the SOM grid difficult or 

impossible to reach, and thus is less representative of the performer’s musical control 

intention. For each 𝐶! dimension in 𝐕𝑮 we measure the range between the 25th and 

75th quartile and each entry 𝐯∗ beyond the double of this range is marked as an outlier 

and removed from the training data. 

Secondly, vocal-gestural training data may present unintended vocal-postures 

that can bias the trained GC. When producing the gestural training data the performer 

often fails to vary continuously the voice timbre introducing steady pauses. This in 

turn causes static vocal-posture segments arising within the dynamic vocal-gestures. 

We observed this more frequently with novice users less familiar with the abstraction 

of continuous timbre variation. For example in repeated instances of a basic vocal-

gesture just involving the gliding between two vowels, the steady utterance one of the 

vowels often represents a conspicuous amount of time. Figure 3.25 shows the 

spectrogram of an excerpt of a voice-gesture, in which is evident that between 4.0 and 

5.5 seconds, and between 6.9 and 7.9 seconds the voice timbre does not change over 

time. The presence of these undesired pauses can drastically increase the density of 

the 𝐕𝑮 data in proximity of some vocal-postures. Since the local data density in 𝐕𝑮 

implicitly determines the dynamic between GC input and output, the presence of 

postures in this context is highly detrimental, and is another possible cause leading to 

a GC less representative of the performer’s control intention. Moreover excessively 

dense sub-regions increase the risk of getting local topology distortion of the SOM 

lattice. A proper pre-processing of the training data affected by this issue is essential. 

Accurate manual editing is the best option but is tedious, very time consuming, and 

thus not inline with the aim of minimizing the user interaction in the VCI4DMI 

system setup. Furthermore inaccurate cuts of the sound file can generate outliers. 
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Figure 3.25: Spectrogram of an excerpt of voice-gesture that includes frequent timbre 

variation pauses.  

 

Therefore we implemented the following procedure to optionally pre-filter the data in 

𝐕𝑮 automatically. We suppose that each unique unwanted vocal-posture determines a 

cluster in 𝐕𝑮. Their number can be provided by the user or derived finding the 

number of clusters that maximize the average similarity of every data point with 

points in its own cluster compared to points from other clusters, as proposed in the 

silhouette method (Rousseeuw, 1987). Afterwards we partition the data with the k-

means clustering algorithm (Seber, 1984), and we filter the data with the algorithm 

described in the pseudocode of Figure 3.26. 

 
initialize distance_threshold at high value 
FOR each cluster 
 WHILE normalized average NN distance bigger than treshold 

FOR every consecutive pair of entry 
 IF distance less than distance_threshold 
  remove the second from the dataset 
 END 
END 
reduce distance_threshold 

END 
END  
Figure 3.26: Vocal gesture training data pre-filtering algorithm pseudocode. 

 

The distance threshold is lowered at fine steps and the filtering is terminated when the 

normalized average nearest-neighbor distance in the cluster is below a user-defined 

threshold. This time we use temporal information of the training data, measuring the 

distance only between pairs that are consecutives. Depending on the severity of the 

vocal-postures presence in 𝐕𝑮 the threshold value can be tuned in the range [0.15, 

0.25], which provided a good pre-filtering on our database. When the number of 

clusters 𝑁!" is detected automatically threshold is set to ((1/𝑁!") − (1/5(𝑁!" − 1)  )). 

The two methods to pre-filter the data are applied on the high dimensional data 𝐕𝑮 
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after noisy features are removed but before the Isomap NLDR. The pre-filtering was 

already included in all results and measurements presented in previous sections. In 

Figure 3.27 we show two example of pre-filtering by cluster density reduction, 

showing the original data, the filtered data, and the actual final training data. In order 

to visualize the data we performed the 2D reduction by Isomap. The two vocal-

gestures are similar but from two different users. In the example on the top row the 

number of clusters is equal to four and entered manually, while on the bottom one the 

three clusters are automatically detected and set to three. It is evident how the 

discarded data helps to reduce the density in proximity of the center of the clusters, 

which is high due to the presence of the unwanted postures in the gestural data. 

 

 
Figure 3.27: Examples vocal-gesture data pre-filtering by cluster density reduction displaying 

the original data (left), rejected data (center), and final training data (right). 

3.3.3 Semi-supervised variant 

In Section 3.3.1.2 we discussed and illustrated the importance of the gestural extrema 

and the related SOM lattice vertices in the GC component of the VCI4DMI. Since the 

training procedure is unsupervised, the user, before using the GC, has no control or 

knowledge about which timbre will be mapped on those key positions. Here we 

propose a variant of the GC training that directly allows defining the interaction 

required to generate the apexes of the 𝐠𝐜𝒐𝒖𝒕 mapping space. The only additional 

inputs that this method needs from the user are the 2! vocal-postures 𝐕𝑷𝒙𝒕 centered 

in 𝐯!"#, that will be associated with the vertices of the SOM output lattice. Unless the 

user has an unusual accurate control over the voice and is very experienced with the 
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system there is no guarantee that after the Isomap NLDR the 2! postures will be 

placed well apart near the edges of the 𝐕𝑮∗. Therefore even if we associate the a!" 

with the 𝐯!"#, SOM lattice is likely to be extended over and beyond the postures 

centers during the training. To ease the placement of the 𝐯!"# near the 𝐕𝑮∗ boundaries 

we replace Isomap dimensionality reduction stage with a multiclass Linear 

Discriminant Analysis (LDA) (Rao, 1948). This supervised technique, similarly to 

the standard LDA, aim to minimize the “within class” variability and maximize the 

“between classes” variability. In the lower dimensional space data with the same 

label will present a tighter spatial grouping, while those with different labels will be 

pushed apart. The dimensionality reduction transformation, which is linear in this 

case, is learnt only from the 2! 𝐕𝑷𝒙𝒕, properly labeled, and then applied to the 

gestural data 𝐕𝑮. The gestural extrema a!" are associated with the 𝐯!"#, but we still 

search for the rotation angle 𝛼!"# that places them in the optimal position with 

respect to the axis. Also in this case there is no prior knowledge about which 𝐯!"# 

will be related to which SOM vertex, nor can the user specify it. The multiclass LDA 

aims to place the 𝐯!"# apart near the borders of the  𝐕𝑮∗ and, even if it generally 

performs this task better than Isomap, there is still no guarantee about the right 

placement. This is due to possible inconsistencies or incompatibilities between vocal-

gestures and vocal-postures provided by the user. Therefore before the SOM training 

we remove the 𝐕𝑮∗ entries outside the convex hull determined by the 𝐯!"#, allowing a 

small tolerance to prevent drastic reduction in the number of training entries. On the 

left plot in Figure 3.28 we observe that with Isomap NDLR the 𝐯!"#, represented by 

the red circles, are not well spread apart. On the right plot we can appreciate a better 

separation and placement of the 𝐯!"# determined by the multiclass LDA 

dimensionality reduction, and only the entries in blue are considered for the following 

SOM training. 

 

 
Figure 3.28: Isomap (left) and multiclass LDA (right) vPtx displacement. 
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3.4 Evaluation and validation 

To validate the proposed SOG vocal GC method we present next a performance 

comparison with other gestural controllers implemented with different techniques, 

similar to those introduced in the related work. In particular we measure and compare 

the independence, continuity, GC output space spread and coverage of the 𝐠𝐜𝒐𝒖𝒕 

signals computed from real cases of vocal-gestures. The stability, or invariance, of 

the 𝐠𝐜𝒐𝒖𝒕 is compared over sets of real vocal-postures, measuring the standard 

deviation of the output signals. The output signal continuity is estimated measuring 

the average Euclidean distance in the GC output space determined by consecutive 

voice frames. We partition the GC output space into 256 and 512 discrete sub-regions 

for the 2D and 3D cases respectively, and for each we track the output count over 

vocal-gestures. For the space coverage we consider the percentage sub-regions with 

non-zero count, while for the space spread we compute the standard deviation of the 

output counts. As the estimation of the 𝐠𝐜𝒐𝒖𝒕 signals independence we compute the 

distance correlation, defined in Equations 3.28-30, which depends on the distance 

covariance, equivalent to the Brownian covariance (Gretton, Fukumizu, and 

Sriperumbudur, 2009). The distance correlation measures the statistical dependence 

between two random vectors which do not necessarily share the same dimensionality 

(Székely, Rizzo, and Bakirov, 2007), thus it allows the measurement of the 

independence of a scalar signal or feature in relation to the remaining vectorial set. It 

ranges in [0, +1] and the lower value implies statistical independence. In Equations 

3.28-30 the operator  represents the Euclidean norm, while 𝑋,𝑌 , 𝑋!,𝑌! , and 

𝑋!!,𝑌!!  are independent and identical distributed random variables, not necessarily 

sharing same dimensionality. 

 

 dCor 𝑋,𝑌 = dCov(𝑋,𝑌) dVar(𝑋) ∙ dVar(𝑌) (3.28) 

 

 dVar! 𝑋 ≔ E 𝑋 − 𝑋! ! + E! 𝑋 − 𝑋! − 2E 𝑋 − 𝑋! ∙ 𝑋 − 𝑋!!  (3.29) 

 

 dCov! 𝑋,𝑌 ≔ cov 𝑋 − 𝑋! , 𝑌 − 𝑌! − 2cov 𝑋 − 𝑋!! , 𝑌 − 𝑌!!  (3.30) 

 

The five GCs that we consider in this study present progressively more 

elaborated solutions to compute the 𝐠𝐜𝒐𝒖𝒕, roughly emulating a broad range of 

methods found in the related work, and gradually assessing the benefits of the 
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strategies presented in this chapter. The different GCs that we consider generate the 

output signals by: 

1. selection of most independent MFCC (GC-1); 

2. selection of most independent robust LPC-MFCC-PLP (GC-2); 

3. PCA projection of MFCC (GC-3); 

4. PCA projection of robust LPC-MFCC-PLP (GC-4); 

5. SOG based GC method with Isomap NLDR of robust LPC-MFCC-PLP 

(GC-5 - SOG). 

 

The selection of most independent features in the first two GCs is based on the 

distance correlation, and to obtain statistically comparable results we used the same 

optimal low-level feature computation settings for all the GCs, derived from our 

blind-search algorithm. These already introduce improvements over the features 

computation, filtering and selection techniques presented in previous works. The 

output signals of the GCs are normalized to the range [0, +1]. Identical vocal-gestures 

and vocal-postures were used to determine or train the different GCs. For the SOG 

based GC we used the most unsupervised and default options for data pre-filtering 

and system training. Moreover identical and training compliant vocal-gestures and 

vocal-postures were used for all performance measurements, with an overall duration 

of about 30 seconds for the different postures and 30 seconds for the gestures, mostly 

derived from the user evaluations presented in Chapter 7. 

The results in Table 3.3 are presented separately for 2D and 3D GC cases. The 

2D GCs results are derived and averaged from the same 15 cases of Section 3.2.2.4, 

excluding the two cases with background noise for statistical significance. The 3D 

GCs results are averaged over a different dataset, which includes only 6 cases from 

the users, 4 in total. The dataset used for this validation contains gestures mainly 

including sonorants vowels gilding, and provided by users with limited familiarity 

with our novel system. However these facts have low relevance here because we are 

comparing different vocal GC approaches to highlight the gains of our contributions 

rather than measuring the absolute ratings. 

The results of Table 3.3 show that the SOG vocal GC method overall 

outperforms the other GC implementations, presenting best or close to the best results 

for all measurements. The trained output lattices included an average of 391 nodes for 

2D cases considered and 1010 for the 3D cases. The 𝐠𝐜𝒐𝒖𝒕 signals present low 

statistical dependence, with values of distance correlation as little cases GC-1 and 

GC-2, in which the features selection was directly based on the independence 

measurement. Great improvements are shown for the GC output space coverage and 
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spread, while the other GC techniques present larger non-reachable sub-regions 

detrimental for full expressivity in the interface DMI mapping stage. 

 

GCout&Measure&,&2D&cases&avg GC,1 GC,2 GC,3 GC,4 GC,5&,&SOG
gest.&independence&(dCor) 0.19463 0.16993 0.33269 0.29505 0.18641
gest.&continuity&(mean&distance) 0.10553 0.11328 0.07367 0.07102 0.04966
gest.&space&coverage&(%) 56.875 55.4948 55.625 57.8125 84.4792
gest.&coverage&spread&(count&std) 14.7245 13.6361 13.4279 12.2285 6.21326
post.&stability&(std) 0.06952 0.06732 0.04023 0.03595 0.03908

GCout&Measure&,&3D&cases&avg GC,1 GC,2 GC,3 GC,4 GC,5&,&SOG
gest.&independence&(dCor) 0.1976 0.28217 0.24127 0.23479 0.16579
gest.&continuity&(mean&distance) 0.17167 0.17418 0.13744 0.14107 0.12076
gest.&space&coverage&(%) 33.4961 32.8451 33.9518 35.9701 58.5547
gest.&coverage&spread&(count&std) 18.5319 15.1238 13.9554 12.6171 7.65857
post.&stability&(std) 0.07033 0.06894 0.05028 0.04447 0.04816  

Table 3.3: Comparison of independence, continuity, coverage, and spread over vocal-gestures, 

plus stability over vocal-postures, measured for the output signals of five different vocal GC, 

averaged over a database of 2D and 3D cases. Lower numbers indicates better results except 

for the coverage percentage (best results in bold with grey background). 

 

The coverage is still not close to 100%, especially for the 3D case, because when 

capturing the data we did not ask users for full space coverage, as in the other test 

presented Chapter 7. The improved spatial spread, visible in the first example of 

Figure 3.29, did not degrade 𝐠𝐜𝒐𝒖𝒕 continuity or stability, which are rather improved 

as well. The low values for the continuity measurements imply a reduction of 

discontinuity of the signals at the output of the GC. These are shown in the second 

example of Figure 3.29. The stability over vocal-postures for the SOG vocal GC is 

low as in other cases, and in the DMI control component of the interface, as well as in 

the VCI4DMI prototype, we integrate further techniques to improve the DMI 

parameter stability. 

The different GCs considered in this study were briefly tested in the preliminary 

study and these presented sufficient usability and controllability. We explored other 

GCs based on Independent Component Analysis (ICA) technique (Comon, 1994; 

Hyvarinen, 1999) to learn the extraction of independent signals from the large set of 

LPC, MFCC, and PLP features. The ICA based GC outperformed the other 

implementations in most of the measurements included in Table 3.3, but it presented 

severe limits in the usability and in the understanding of the mapping between voice 

timbre and GC output space positions. These issues determined the exclusion of this 

technique for the development of the VCI4DMI. The ICA supposes that the 
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observations are a linear combination of arbitrary and independent sources. We 

speculate that the issues we experience may be due to the non-linear combination of 

distinct acoustic voice characteristics into the low-level features we use here. 

 

 
Figure 3.29: Comparisons between worst gestural controller case (red) and proposed SOG 

based gestural controller (blue) for outputs space mapping spread (top) and output signals 

trajectories continuity (bottom) for two different 2D validation dataset. 

3.5 Summary 

In accordance with the overall principles and requirements for the VCI4DMI of 

Section 2.3.1, in this chapter we introduced and motivated our novel adaptive and 

generative method to tune the gestural data computation and to implement an ad-hoc 

gestural controller from user provided vocal training data. In particular, after 

describing the voice production apparatus and voice perception, we presented the 

procedure to compute robust and continuous data from the performer’s voice, 

representative of the musical control intention, and we refined the computational 

settings towards noise rejection and quantity of information enhancement. Then we 

introduced a gestural controller based on a model of the gestural data learnt with a 

SOM lattice, trained with a modified procedure, that looks at the spatial unfolding 

properties of the voice derived data. The GC is capable of responding to new voice 
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input accordingly to the model derived from the training vocal-gestures. The 

numerical evaluation showed consistency with the design principles and 

requirements. Moreover the results demonstrate that the proposed method 

outperforms other previously proposed solutions. The training procedure relies 

completely on unsupervised techniques, thus the user effort in setting up this 

component of the VCI4DMI is limited to providing a set of vocal-posture and vocal-

gesture audio examples. In presenting and developing the contributions of this 

chapter we aimed to generalize underlying concepts so that they can find further 

application in different musical interfaces or in non-musical contexts. In Figure 3.30 

we illustrate the summary of the training procedure and functional part of the GC for 

the VCI4DMI presented in this chapter. 
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Figure 3.30: Illustrated summary of training procedure and functional part of GC for the VCI4DMI. 
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Chapter 4  
 

Sonic Control of Digital Musical 

Instruments 
 

 

This chapter is dedicated to the digital musical instrument control strategy developed 

to implement a non-trivial interaction between the few signals extracted from the 

voice and an arbitrary higher number of DMI parameters. Herein the method we 

propose takes advantage of specific instrument sonic maps, automatically computed 

beforehand, for adapting and reducing the dimensions of the control space. At first in 

the chapter we describe the milestones in the evolution to modern DMI and synthesis 

techniques. We classify and examine DMI input parameters in relation to musical and 

sonic effects they determine in the output sound to identify those most appropriates 

for vocal control. Then we present a generic DMI taxonomy for the development of 

categories requiring different analytical procedures to determine the specific 

parameters-to-sound relationship. It follows the description of the analysis methods 

for each category and the description of the case-specific sonic maps, taking timbre 

perception principles into consideration. Finally we describe the strategy to use the 

high dimensional sonic maps to achieve a few-to-many mapping with theoretically no 

losses in the sonic capability of the DMI, which is central to the VCI4DMI for 

providing a natural control over an arbitrary number of DMI real-valued parameters. 

The chapter ends with discussing results and measurements over a set of real DMIs. 

4.1 Digital musical instruments and control 

Modern electronic or digital musical instrument are the result of a century of 

evolution and integration of innovations from different fields. The way performers 

play and interact with these devices is on one side conditioned by centuries of 

practices with acoustic instrument, while on the other it evolves continuously to keep 

up with the new potential provided by instrument designers. Here we briefly review 

the short history of sound synthesis for musical instruments and we discuss the 

musical meaning of different type of controls. 
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4.1.1 From electrophones to modern DMI 

Music has been part of all human cultures across the globe since more than 50,000 

years, and it exists only through musical instrument and players. Prehistoric flutes, 

made out of carved bones and about 35,000 years old, have been found in several 

places across central Europe and archeologists consider these the earliest artifacts 

made from durable materials that can be called primitive musical instruments. The 

Divje Babe Flute, in Figure 4.1, found in Slovenia is the oldest instrument, and it 

hails from the Paleolithic, back to 43,000 years ago. Prior to that it is believed that 

generic tools such as stones, or clapping of hands were used to create rhythms as an 

early form of music. Musical instruments have dramatically evolved into a wide 

variety of forms across time and cultures (May, 1983) and although there are no 

reliable methods to ascertain the precise chronology of musical instruments within 

the human history, it is possible to classify these accurately following the 

Hornbostel–Sachs classification, which is divided into four macro categories: 

idiophones, membranophones, chordophones and aerophones (Von Hornbostel and 

Sachs, 1914). In the early twentieth century, with the advent and spread of 

electroacoustic, electric, and later electronic or digital musical instrument the 

Hornbostel–Sachs classification became incomplete since it included only those that 

today we call acoustic instruments. Therefore in 1940 Sachs added the electrophones 

category that includes: 

“51. Instruments having electric action (e.g. pipe organ with electrically 

controlled solenoid air valves); 

52. Instruments having electrical amplification such as the Neo-Bechstein 

piano of 1931, which had 18 microphones built into it; 

53. Radioelectric instruments: instruments in which sound is produced by 

electrical means.” 

– Curt Sachs (Sachs, 1940) 

 

Today, with the view over more than a century of electrophones and in order to 

maintain the original classification consistency, ethnomusicologists such as Ellingson 

(1979) and Kartomi (Kartomi, 1990) propose that only the sub-category 53 should 

remain in there, while the others should be placed respectively within aerophones and 

chordophones. The Telharmonium, in Figure 4.1, is the first non-acoustic instrument 

in history that presents both a sound generation mechanism and musical interface. It 

was a 200ton electric organ developed by Thaddeus Cahill starting from 1897, that 

would inspire 30 years later the Hammond organs. It electromechanically generates 
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an electric signal which creates musical sounds, by tonewheels for additive synthesis, 

and is then projected by primitive loudspeakers. Tonewheels were originally invented 

for radio communication purposes, and later adopted in electromechanical organs. 

Application and hacking of technologies designed for different purposes is a recurrent 

pattern in DMIs history. Earlier, Elisha Gray in 1876 realized the Musical Telegraph, 

the first electrically generated sound synthesis, transmitted over telephone lines, 

based on of self-vibrating electromagnetic circuits, representing a prime form of 

oscillators. One year later Thomas Edison invented the phonograph, the first device 

that could record and reproduce sounds. Even though it was neither a musical 

instrument nor electrical, it finally allowed sounds to travel across time and space. 

Sound recording devices such as tape and then samplers, will later gain a great 

importance for DMIs. The triode audion, the first amplifying vacuum tube introduced 

in 1906 by Lee DeForest, enabled the implementation of electronic oscillators, the 

basic building blocks of sound synthesizers. In 1928 Fritz Pfleumer invented the first 

magnetic tape sound recorder, inspired by the 1898 Valdemar Poulsen magnetic wire 

recorder. In 1935 it was commercialized by the German Magnetophon, innovating 

with its portability and cut and paste contents editing capability. The tape recorder 

was the essential device for the Musique Concrète artists. Indeed in the 1930’s 

“electronic music” was defined for the first time as “electronically produced sounds 

recorded on tape and arranged by the composer to form a musical composition” 

(Dictionary.com, n.d.). In 1937 Harald Bode introduced the Waarbo Formant Organ, 

the first polyphonic synthesizer, while Evgeny Murzin invented the ANS Synthesizer, 

a photoelectronic musical instrument, generating a sound from a drawn spectrogram. 

The Novachord, by Laurens Hammond in 1939, was the first music synthesizer 

commercially manufactured. In 1948 Hugh Le Caine presented the Electronic 

Sackbut, the first voltage-controlled synthesizer, a control method that later would 

become a standard. 

Sound generation in the early twentieth century was widely based on the additive 

synthesis technique, consisting of sine waves summation. This method, based on the 

Fourier theorem principles, had the drawback of requiring a high number of 

independent sinusoidal oscillators to achieve interesting timbres, and thus it presents 

difficulties for dynamic control. It was abandoned, though recently revitalized, when 

simple electronic active circuits started to be used to generate non-sinusoidal audio 

waves. Due to a richer spectrum, these allow the synthesis of complex timbres with a 

lower numbers of oscillators. Therefore the era of analog synthesis started with 

Raymond Scott who in 1951 introduced the first remarkable fully analog electronic 

step sequencer, containing 16 independent oscillators and tone circuits, and in 1956 
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he presented the Clavivox, a synthesizer sub assembled by Robert Moog. Voltage 

controlled amplifiers, oscillators, and filters became the basic building blocks of most 

analog synthesizers. In 1957 RCA designers Herbert Belar and Harry Olson built the 

Mark II Music Synthesizer, installed at the Columbia Princeton Music Centre. 

Composed of an array of analog synthesis components it had the size of a room and 

could manage four notes variable polyphony. To change the timbre it was required to 

modify the module interconnections and it generated sound only by programming 

through a punched paper tape. In 1964 Robert Moog displayed the Moog modular 

analog synthesizer at the Audio Engineering Society convention, which was a 

breakthrough with its small size and intuitive use. The work of Moog was remarkable 

for the sound of his machines but also because it was oriented toward making devices 

portable and accessible to musicians, not only to engineers. He realized the Minimoog 

in 1970, integrating all modules of the earlier versions in a single device with a built 

in keyboard, which gained high popularity in live performance and in pop music. 

New methods of sound generation started to emerge such as the pioneering work 

of Iannis Xenakis who in 1959 introduced a primitive form of granular synthesis in 

his composition, using analog tone generators and tape splicing. In 1975 Curtis Roads 

implemented the first granular synthesizer using MUSIC V. Real-time would be 

achieved only in 1986 by Barry Truax. Different synthesis techniques based on 

grains, elementary sound units, will later gain larger reputation and application 

(Schwarz, 2006) such as the corpus based concatenative synthesis (Schwarz, 2000) 

and audio mosaicing. In 1967 John Chowning discovered the FM synthesis algorithm 

(Chowning, 1973), which can generates rich and complex timbres with a low number 

of oscillators. It was then exclusively licensed to Yamaha and included in the 1983 

DX-7, the first stand-alone digital synthesizer. Sample based sound synthesis became 

a mature technique with the Fairlight CMI, the first groundbreaking polyphonic 

digital sampler, introduced by Peter Vogel and Kim Ryrie in 1978.  

Physical modeling synthesis was first introduced in 1969 by Lejaren Hiller and 

Pierre Ruiz, using a finite difference model of a vibrating string to generate plucked 

and struck string tones (Hiller and Ruiz, 1971). In 1979 Claude Cadoz, Annie 

Luciani, and Jean-Loup Florens developed CORDIS-ANIMA, a physical description 

language for musical instruments based on networks of masses and springs (Cadoz, 

Luciani, and Florens, 1993). In 1992 Julius Orion Smith III developed a simple and 

efficient delay-line structures to model wave propagation in objects such as strings 

and acoustic tubes (J. O. Smith, 1992), and he cooperated with Yamaha for its 

integration in the VL-1, the first commercial physical model synthesizer, released in 

1994. In 1991 Jean-Marie Adrien introduced the modal methods for physical 
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modeling synthesis, which relies on the decomposition of the dynamics of a system 

into modes, each of which oscillates at a given natural frequency (Adrien, 1991), later 

implemented in the Modalys/MOSAIC environment by Joseph Derek Morrison 

(Morrison and Adrien, 1993). 

Microprocessors, microcontrollers, and CPUs started to be integrated in DMIs to 

provide additional control functionalities, starting with fast memory save and recall of 

machine state as there is in the 1977 Prophet-5 from Sequential Circuits. This trend 

led to more complex devices such as the 1988 Korg M1, the first complete music 

workstation with an on-board MIDI sequencer and a rich palette of sound, with the 

unprecedented all time record of 250,000 units sold worldwide. Today the trend 

continues using general-purpose personal computers and the hardware 

implementation platform, and offering virtual devices implemented in software. High 

functionality integration is offered by DAWs that followed the approach of the 1993 

Steinberg Cubase Audio, which provided 8 tracks of recording and playback with 

DSP effects built-in on the Atari Falcon-030, using only native hardware. In the same 

time span a variety of audio effects and signal processing techniques were developed, 

often in the context of radio broadcasting. These were introduced as an adjunct part 

of a DMI or as a separate unit to manipulate sounds from other sources. Standalone 

effect processors proliferated because they are more flexible and suited also for the 

processing of the sound of acoustic instruments, voice, or recorded sounds. 

 

 
Figure 4.1: Divje Babe Flute (left) and Telharmonium (right) respectively the first acoustic 

and electronic musical instruments in history. 

4.1.2 Control flow 

Musical instruments can be modeled as a flow of information processing that 

converts gestural parameters into musical parameters through an intermediate 
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transformation stage involving only technical parameters (Kvifte and Jensenius, 

2006), usually hidden and irrelevant to performers. These, at every stage, are 

represented or perceived as continuous quantities, which become discrete when the 

variations are tied to fixed step quantities such as the pitch on the chromatic scales. 

Regardless of the specific acoustic instrument or synthesis technique, the input 

parameters determine loudness, pitch, timbre and duration of the generated sound. As 

Kvifte and Jensenius suggest, these are described by different measurement modes, 

respectively ordinal, interval, nominal and ratio levels. For DMIs the technical, or 

synthesis, parameters are very relevant because they are not fixed as they are in 

specific acoustic instruments. The possibility to change phyisical and geometrical 

properties of an acoustic resonator during a performance are extremely limited, while 

for sound synthesis there are no limits on runtime modeling and variables tuning. The 

wide and continuous timbre morphing potential is a key characteristic of modern 

DMIs, while the range and modulation rates of pitch, duration, and loudness are 

broader. Therefore besides triggering and modulating musical parameters, performers 

can design sound timbres and textures in real-time. The possibility to link synthesis 

variables to parametric envelopes and Low Frequency Oscillation (LFO) for example, 

facilitate the creation of evolving sounds rich in dynamics. In acoustic instruments it 

is simple to relate gestural parameters to discrete and continuous musical parameters, 

while DMIs expose possibly hundreds of variables in the synthesis algorithm, also 

called technical parameters, which may have little, variable, or no correlation with the 

musical output, unless the user is deeply familiar with the specific device. 

In the previous chapter we described a method to extract intermediate parameters 

from an ad-hoc vocal GC. These are continuous so that mapping is possible on both 

real-valued and discrete DMI control variables, while the output of the GC has a 

theoretical limit equal to the real dimensionality of the vocal-gesture trajectories. 

Therefore the challenges we face in developing the mapping strategy for the 

VCI4DMI are to: 

• provide a reliable and non-error-prone control of musical parameters 

determined by the controlled DMI technical parameters; 

• implement a non-trivial control beyond the simple map of individual 

components of the GC output to synthesis variables, while maximizing 

the number of simultaneously controllable DMI parameters; 

• automatically adapt the interface to the specific target instrument 

behavior to provide a posterior co-design (Cook, 2001) between 
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instrument and interface, and to hide the intermediate information 

processing stages to the user. 

4.1.3 Critical parameters 

The VCI4DMI requires the simultaneous control of multiple real-valued and time-

continuous parameters, as mentioned in the previous chapters. Despite the specific 

synthesis technique and the mapping strategy we adopt, the variation of DMI 

parameters modifies the sound generation process, which in turn impacts on different 

musical parameters. Traditional music, regardless of the genre, is largely built on the 

fundamental elements of rhythm, harmony and melody. Listeners, even if not 

musically trained, have a large musical experience that conditions the way they 

experience the pieces unfolding. As Meyer (1956) claims, generating, suspending, 

prolonging or violating listeners’ expectations about the fundamental elements is a 

key feature of musical compositions and improvisations (Narmour, 1992). Moreover 

melody, harmony and, to a certain extent, rhythm unfold in a two-dimensional 

discrete time-frequency domain. On one axis the grid is determined by the pitch 

scale, and on the other by the temporal gird, formed by integer fraction of the tempo. 

A musical event generated in a wrong grid position is easily perceived as a 

performer’s error because it corrupts one or more musical fundamental structures of a 

piece. We consider “critical” and less suitable for vocal control those DMI 

parameters directly linked with discrete musical parameters in the time or frequency 

domains. Therefore when the voice is not the exclusive input modality of an interface 

system, we favor the mapping of the voice to real-valued DMI parameters that affects 

exclusively timbral properties of the musical parameters. Examples are morphing the 

spectral envelope or the brightness of a synthesizer’s timbre, the depth of a 

modulation, or the feedback of a tape delay. 

4.1.4 Few-to-many mapping trend 

With the complexity of the synthesis model continuously increasing, the numbers of 

controllable parameters on DMIs related to variables in the sound generation and 

processing algorithms is continuously expanding. For instance, the modification of 

synthesis patches in a real or emulated analog synthesizer is easily feasible by 

adjusting the few dozen synthesis variables that regulate the two oscillators. The 

same operation is more challenging with the hundreds of variables in physical 

modeling synthesizers. Moreover parameters can present strong correlations or 
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mutual dependencies that change their effect on the resulting output sound. Examples 

are the number of harmonics of an oscillator followed by a low pass filter, and the 

amplitude plus frequency control of the modulator in FM synthesis. In the first case 

the audible effect of increasing the harmonic content strongly depends on the cutoff 

frequency of the filter, while in the second the timbre variation produced by 

increasing the modulator frequency depends on the amplitude parameter. Dealing 

with a high number of DMI parameters with potential no or little effect on the output 

sound is admissible, even if not desirable, in composition and production context, 

where the user can patiently adjust one parameter at a time to exactly tune the device 

for the desired sound. In live performances the expressivity of control is usually much 

more significant than a fine and precise sound synthesis tuning. 

In the linear one-to-many mapping, the control space dimensionality is reduced 

at the expense of large losses in achievable parameter combinations. For instance 

mapping two synthesis parameters to two standard MIDI control changes, with 7-bit 

resolution or 128 unique values each, we can set up to 16,384 unique combinations or 

sounds. When mapping these together to the same MIDI control change we can 

achieve only 128 different combinations, determining a 99% loss over the potential 

set. Designers often package more meaningful one-to-many mappings with the 

synthesis patches, often called “macro” parameters, using different linear 

transformation for each DMI parameter controlled by the same control signal. This 

strategy provides expressive sound morphing, but the manual definition of each 

scaling and offset value requires a deep knowledge of the specific synthesis process, 

not inline with the principle of minimal interaction and expertise for the VI4DMI 

setup. 

The necessity for a reduced set of control parameters, with higher relation to 

musical or perceptual features of the sound has motivated and driven several works in 

recent years. These enable controlling a number of DMI parameters with fewer 

interface control signals derived from the performer’s gesture, limiting the decline in 

expressivity and sonic potential. The Manifold Interface (Choi, Bargar, and 

Goudeseune, 1995) helps users to identify, through visualizations and real-time 

gestural control, the sub-regions of the parameter spaces associated with the desired 

acoustic results, to shrink the mapping region to a less extended area. Interactive 

evolution and genetic algorithms principles are used in (Dahlstedt, 2001) to simplify 

the generation of new sound objects. These are associated with a large set of 

synthesis parameters and generated by genetic mutations from a selected pair of 

parents, from which the new object is likely to inherit sonic characteristics. The 

Metasurface (Bencina, 2005) implements two-to-many mapping by distributing 
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instrument parameters snapshot on a surface first, and then interpolating between 

these using a technique based on the Voronoi tessellation, that ensures parameters 

continuity when moving across the parameters presets. The Modulation Matrix 

(Brandtsegg, Saue, and Johansen, 2011) provide control plus automatic modulation 

on a large number of parameters achieved with self-modifying mapping system 

combined with a dynamic interpolation scheme, implemented efficiently by its 

inherent sparse matrix structure property. Principles of catastrophe theory and 

dynamical systems are applied to musical interface in (Gaffney and Smyth, 2013) to 

expand generate additional mapping parameters, modeling the complex dynamics 

regulating physical phenomena in acoustic instruments. 

4.2 Sound timbre and perceptual control 

We discussed the performers’ need for a transparent DMI control strategy, so that 

their gestures can be directly related to musical parameters rather than technical, 

synthesis or processing variables. Directly controlling perceptual sound aspects is 

possible in certain scenarios. These can be derived from a detailed knowledge of the 

synthesis process, estimated by an analysis of the relationship between instruments 

input and output, or by directly accessing knowledge about the organization of sound 

material in certain synthesis techniques. Next we briefly present characteristics and 

limitations of these systems and we introduce the principles of human timbre 

perception in more detail. This approach can shift the interaction feel from synthesis 

parameters directly to perceptual features of the sound. This is a key aspect in the 

development of this dissertation because the input modality of the interface, the 

voice, is produced directly targeting specific timbres rather than targeting physical 

configurations of the vocal tract. Therefore the techniques developed here have their 

roots in natural timbral control strategies while making the DMI control space 

implicit rather than explicit. 

4.2.1 Timbre, descriptors and perception 

Timbre is often considered “the psychoacoustician's multidimensional waste-basket 

category for everything that cannot be labeled pitch or loudness” (McAdams and 

Bergman, 1979), or the sound attribute that allows us to distinguish two sounds with 

equal pitch and loudness. Since it includes multiple objective and subjective 

characteristics of the sound, a simple measurement or standardized numerical 
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representation is not possible. Indeed, as mentioned before, timbre can be measured 

only at nominal level, to distinguish and separate different sounds, but it is not 

possible to order it on an absolute mono-dimensional scale, unless we target single 

characteristics falling into the domain of the timbre such as the tonal character, 

brightness, noisiness, color, attack and decay, color glide, microintonation, vibrato, or 

tremolo. In Section 3.1.3.1 we introduced principles of sound perception in the 

human auditory system. In particular we observed the non-linearity of the frequency 

and loudness perceptual scales. The Seneff (1988) auditory model, illustrated in 

Figure 4.2, captures the essential characteristics of the cochlea and hair cells response 

to sound pressure waves. In the cochlea the sound is divided into separate critical 

frequency bands, each producing an output on a separate nervous channel. In the hair 

cell synapse the final probability of firing depends on the processing chain in which 

the half wave rectification is followed by the short-term adaptation, reduction of 

synchrony and fast automatic gain control. 

 

 
Figure 4.2: Seneff auditory model diagram. 
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Perceptual sound information is then derived from the grouped firing probability 

going through the envelope and synchronous detectors. Thus the perception of timbre 

strongly depends on the spectral contents, often approximated with the spectrum, and 

the time envelope of sounds. Schouten (1968) recognized five main timbre acoustic 

parameters, ranked in relation to contemporary music (Erickson, 1975): tonal to 

noise-like character, spectral envelope, time envelope, spectral envelope and 

fundamental frequency dynamics, and onset. The spectral envelope is often 

approximated with the power spectrum, or further reduced and adapted to the 

auditory system computing energy of the 25 Bark critical bands. The phase 

component of the spectrum is ignored because, according to the Ohm’s acoustic law 

(Ohm, 1843) (Von Helmholtz, 1954), the ear is phase deaf, although this is a very 

crude generalization. The four waves in Figure 4.3 are generated with identical 

frequency components but different phase relation. Despite the strong differences in 

the time domain representation, these tones are perceptually very similar. The time 

envelope is modeled, but also implemented in DMIs, as a sequence of four segments, 

namely Attack, Decay, Sustain, and Release (ADSR), as illustrated in Figure 4.4. The 

attack, decay, and release segments are described by a time value to linearly or 

exponentially increase or decrease the amplitude between two values, while the 

sustain is represented by an amplitude value and it can last an arbitrary amount of 

time. 

 

 
Figure 4.3: Four waveforms generated with different phase relations of identical frequency 

components whose timbres perception is similar, after (Plomp, 1976). 

 

 
Figure 4.4: Illustration of ADSR envelope. 
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The amplitude envelope of real sounds can differ across the critical bands, as 

supported by the Seneff model, and in modern sound synthesis this is emulated 

applying independent ADSR envelopes to different parameters such as to the cutoff 

frequency of filters besides the amplitude of the oscillators. Other timbral 

characteristics such as the brightness or the noisiness are usually computed from the 

spectral centroid and geometric mean. 

Despite the high dimensionality of the timbre spaces, listening tests have 

demonstrated that this space can be reduced down to two or three dimensions, using 

MDS techniques (Grey, 1977). These results have been replicated and extended 

several times since Grey’s original work. Results demonstrate high consistency with 

those of the pioneering work of Grey, across a variety of different musical or sonic 

contexts. McAdams and Cunible (1992) argue that the data in the reduced timbre 

space should maintain the proximity of the original space, therefore NLDR 

techniques based on non-Euclidean distance measurements provide a better 

representation than linear MDS. Moreover they demonstrate the correspondence of 

the three axis of the reduced space with the spectral energy distribution, the onset 

characteristics, and the variation of the spectral distribution over time. However there 

is no model to represent the interaction between the different attributes characterizing 

the timbre, especially because this can be context and subject dependent. Moreover, 

in these studies the listeners were always exposed to a relatively small database of 

sounds, and thus in larger contexts results of the timbre MDS is likely to have higher 

dimensionality. 

Risset and Wessel (1999) in reviewing more than a century of multidisciplinary 

works on timbre description and perception, argue that the adopted representation and 

studies lack of dynamics and context consideration. They observe that, for instance, 

in a single acoustic instrument the dynamics and pitch variation can be wide, and the 

listening condition can be affected by heavy reverberation of the hall or distortions 

low-quality loudspeakers. Regardless of these aspects, source and timbre can be 

always unequivocally identified, implying a perception constancy beyond specific 

circumstances, and supposing the existence of an invariant physical acoustic 

characteristic mediating a given timbre. In their exploration of the timbre by analysis 

and synthesis Risset and Wessel recognize the centrality of the timbre in modern 

music compositions even though the high dimensionality and blurry definition still 

confound a scientific representation. 
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4.2.2 Control-to-timbre mapping and interactive sound maps 

In this section we present existing strategies for direct mapping of the interface 

control data to instrument timbre attributes. The mapping directly to the synthesis 

control parameter space, which is nonetheless still necessary when real-time synthesis 

has to be executed, will be implicit. The link between the two spaces, GC output and 

timbre respectively, needs to be determined, but the strategy can differ across 

synthesis techniques. 

Subjective timbre dissimilarities between 24 orchestral instruments were 

measured and organized by Wessel (1979) in a reduced 2D space by MDS, which 

was then used to control an additive synthesizer. The generation of the related 

parameters interpolates between those of the original 24 patches. This strategy allows 

the generation of a large range of timbres not present in the listening tests, and 

implements a drastic reduction of the control space, while providing perceptually 

meaningful control dimensions. A more complex approach which does not require 

subjective listening is described in (Jehan and Schoner, 2001), in which the 

computerized perceptual analysis of sounds is composed by pitch, loudness, plus the 

timbre descriptors brightness, noisiness and energy of the bark critical bands. These 

were used to develop a synthesis engine that models and predicts acoustic instrument 

timbres. The method is based on cluster-weighted modeling to approximate synthesis 

parameters from timbre descriptions, while it can also predict a timbre given a new 

set of parameters. The similarity arrangement of sonic material into a Gaussian 

kernels space, used to implement the control for a variety of DMI, demonstrated the 

relevance and benefit in music composition and performance expressivity of space 

modeling graphical representations and dimensionality reduction techniques 

(Momeni and Wessel, 2003). 

The strategies considering the perceptual characteristic of the timbre within the 

gesture-to-parameters transformation are generalized by the multi-layer mapping 

chain proposed by Arfib et al. (2002). The introduction of the intermediate perceptual 

space within the modular process improves sensitivity and efficiency of the mapping. 

The navigation of a high dimensional, continuous, and complex sonic space that 

allows timbre micro variations is mapped to a 2D controller in (Van Nort and 

Wanderley, 2007). The authors propose time-invariant and perceptually repeatable 

mappings, as well as dynamic and less sensitive mappings in a 4D sonic space. A 

larger set of intuitive and natural timbre descriptions are exposed and used to control 

sound synthesis in (Poscic and Krekovic, 2013). The system is based on fuzzy models 



 

 106 

manually defined by expert users using if-then-else rules, but allows a novice user to 

effectively control the synthesis algorithm just by using visual programming. 

Sound synthesis techniques based on a database of heterogeneous samples such 

as audio mosaicing and concatenative synthesis (Schwarz, 2000), can intrinsically 

provide control close to the timbre perceptual characteristics of the output, because 

the available sounds are often analyzed, arranged and retrieved according to 

psychoacoustic features. These techniques sequence sound chunks drawn from a 

database, and their temporal length is sufficient to preserve most characteristics of the 

original timbre, with the exception of the time envelope. The database is organized 

and visually represented in 2D or 3D sonic maps, and gestures related to 

instantaneous coordinates of the space determine the sequencing of different sound 

frames into evolving timbre and textures. In MoSievius (Lazier and Cook, 2003) the 

MFCC analysis of the sound frames in the database provides the spatial 

representation for the audio mosaicing engine, and for querying the database in real 

time the system uses the analysis of the live audio input or a symbolic description of 

the target sound. Longer segments of the live audio input are considered to compute 

the descriptors of the query (Schnell, Cifuentes, and Lambert, 2010). This approach 

includes characteristics of the temporal evolution of the sound in the analysis and 

retrieval, providing more pertinent sound classification and organization. Similarly, 

bipolar and higher level timbre descriptors are used to implement a sound browser, 

which organizes textural sounds on a 2D map (Grill, 2012). The descriptors, 

including timbral, temporal and structural characteristics of the sound are 

dimensionaly reduced using the t-distributed stochastic neighbor embedding 

technique. In CataRT (Schwarz et al., 2006), a real-time corpus based concatenative 

synthesis system, smaller sound grains are first extracted from a corpus of sound, 

then analyzed and finally concatenated to generate the output sound, which presents a 

wide timbre potential. The grains are organized and visualized in a 2D color-coded 

sound descriptor space, and the individual components can be associated with 

descriptors selected from a large set. The interaction for the real-time grain selection 

is directly established over the sound descriptor space, and implemented relating the 

gestural data to the grain selection in different modalities (Schwarz, 2012). 

The low dimensional representation of sound databases or synthesis patches is 

recently gaining popularity also in commercial products, because it eases the use of 

complex DMI, and speeds up the generation of new configurations, especially for 
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low-expertise users. In Arturia2 software synthesizers, the factory presets are 

organized in a 2D space and color-coded by instrument category. From the space, in 

Figure 4.5, the user browses the presets with neighborhood perceptual relevance and 

new patches are generated interpolating a selectable subset of patches in a user-

defined position. 

 

 
Figure 4.5: Organization of synthesis patch in timbre space and generation by preset 

interpolation provided in Arturia software DMIs. 

4.3 Modeling DMI sonic response for timbre control 

The VCI4DMI aims to provide natural control over an arbitrary number of DMI real-

valued parameters, which determine the timbre of the generated sound. Voice 

production directly aims for the timbre rather than for vocal tract articulation, thus a 

natural DMI control requires identical characteristics and interaction at perceptual 

sonic level, hiding the technical parameters from the performer. A specific synthesis 

algorithm plus the subsets of fixed and variable parameters determine a univocal 

sonic space enclosing all the potential timbre variation. A limitation of sound 

generators is represented by their weak or missing relationship to sound perception 

models, which determines a sound object oriented interaction rather model oriented 

(Wishart, 1996). The generation of ad-hoc models for the selected synthesizer and 

parameters, centered on the sound perception, has a key role. The techniques for 

timbre analysis and mapping presented in the previous section are not sufficiently 

generic in their theoretical development and practical implementation for the 

application in practical DMI design. Sound models that embrace an end-to-end 

description can provide compression of the parameter space, expose only sonic 

                                                        
2 http://www.arturia.com 
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related parameters, and represent the distinctive behavior that generates a specific 

narrow range of sound (Wyse, 2005). In this section we define our generic strategy to 

derive the sonic space for any DMI without any prior knowledge about the particular 

synthesis model. The DMI is considered as a black box converting algorithm 

variables into perceptual sound features. At runtime, retrieving the synthesis variables 

from the sonic space provides a strong intrinsic reduction of instrument parameter 

space, that prevents cognitive overload of the interface, and at the same time provides 

consistency, continuity and coherence (Garnett and Goudeseune, 1999). Moreover in 

order to cover more scenarios, the proposed method is extended to include DMIs that 

only process input sound signals rather than generate sounds themselves such as, for 

example, audio effects processors. 

The works reviewed in Section 4.2.2 are built upon perceptual timbre 

dissimilarities of different instruments, even though these may be synthetized by the 

same device or algorithm. The low dimensional representation of the timbre space is 

sufficient to discriminate, identify and recognize distinct timbres. However in the 

context of this thesis, an instrument with most of its synthesis variables fixed and the 

remaining parameters under the performer’s control may generate only minor timbre 

nuances, overlapping with others or clustering too tightly in the proposed low 

dimensional timbre spaces. A prior reduction or a manual selection of the 

components of the sonic space is inadequate because we assume no prior knowledge 

of the DMI internal algorithm. Therefore we favor an analysis method that first 

considers the timbre in a high dimensional space, and in a second stage finds the non-

linear reduction that maximizes the discrimination across sonic results despite the 

absolute timbre breadth. Moreover we do not consider the timbre only as an 

instantaneous feature of the generated sound, but we can also include, when 

necessary, dynamics that characterize the transient phase or the temporal variations of 

sound textures. 

4.3.1 Generic DMI model 

Despite the synthesis algorithm, the implementation, the sound generating or 

processing properties any deterministic DMI can be modeled with Equations 4.1-4. 

The set I!"" contains parameters of a specific instrument, and it includes the subset I 

of 𝑃 parameters which are the target of the real-time interface control. The perceived 

timbre ζ 𝐢,𝑇  over a time interval 𝑇, generated by the unique combination of 

parameter 𝐢, depends on the T-tuple of DMI outputs 𝑑 𝐢, 𝑡  and the auditory system 
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transfer function A(). Equation 4.3 is valid for DMIs that generate sounds, while 4.4 

is related to DMIs that process sounds, and thus depending also on the input signal 𝑠. 

 

 I = i!, i!,… , i! ⊆ I!"" (4.1) 

 

 𝐢 = [𝑖!, 𝑖!,… , 𝑖!] (4.2) 

 

 ζ 𝐢,𝑇 ≈ A(𝑑 𝐢, 1 ,𝑑 𝐢, 2 ,… ,𝑑 𝐢,𝑇 ) (4.3) 

 

 ζ 𝐢,𝑇, 𝑠 ≈ A(𝑑 𝐢, 1, 𝑠 ,𝑑 𝐢, 2, 𝑠 ,… ,𝑑 𝐢,𝑇, 𝑠 ) (4.4) 

 

Without loss of generality, we consider each parameter 𝑖 in the range [0,1]. The 

set of unique combination of input parameters, in Equation 4.5, has cardinality 𝐵 

equal to the product of the number of unique values that each parameter can assume, 

in Equation 4.6. This in turn depends on user-defined limited range and on real-

valued parameter resolution. In Equation 4.6 the symbol  represents the 

cardinality operator. 

 

 𝐈 = 𝐢!, 𝐢!,… , 𝐢!  (4.5) 

 

 𝐵 = 𝐈 = i𝒋

!

!!!

=
max i𝒋 −min(i𝒋)
resolution(i𝒋)

!

!!!

 (4.6) 

 

To fully characterize a DMI we relate each parameter vector 𝐢! to a timbre descriptor 

vector 𝐝! with dimensionality 𝐴, which are coefficients that provide a detailed 

representation of the output sound timbre. Therefore two matrices 𝐈 and 𝐃, with 

different dimensionality but equal number of univocally related entries 𝐵, represent 

the model describing the sonic space generated by a given DMI. The vectors 𝐝! are 

related to the ζ 𝐢𝒋,𝑇  and numerically computed by extracting timbre perceptual 

descriptors from the sequence 𝑑 𝐢! , 1 ,𝑑 𝐢! , 2 ,… ,𝑑 𝐢! ,𝑇 , as in 4.7 where 𝑓 

represents the timbre descriptor analytical function. 

 

 𝐃 = 𝐝!,𝐝!,… ,𝐝! = [𝑓 ζ 𝐢!,𝑇 , 𝑓 ζ 𝐢!,𝑇 ,… , 𝑓 ζ 𝐢! ,𝑇 ] (4.7) 
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4.3.2 DMI taxonomy for perceptual sonic response analysis 

In order to develop a holistic analysis method that allows interfacing the VCI4DMI to 

most instruments, we present next a taxonomy for DMIs based on the sonic 

characteristic and high level relation between parameters and output, easily 

identifiable by users. The goal is to have a variety of different analytical strategies for 

different cases, while at the same time avoiding proposing too many categories that 

would be difficult to associate to specific DMIs by inexperienced users. Moreover the 

selection of the analysis type can be also in accordance to specific sonic 

characteristics that the performer wishes to control. 

DMIs presenting major aleatory or stochastic components in the algorithm are 

excluded from this study because for these cases the parameters vectors 𝐢! and the 

timbre descriptor vectors 𝐝! cannot be uniquely related. Minor stochastic components 

such as the presence of secondary noisy modulation can still be included taking the 

average of the perceptual descriptors computed over a longer analysis time interval 𝑇. 

DMIs with causality relation between past inputs and current output, such as those 

embedding dynamic models, are still theoretically compliant with the DMIs model 

we adopt here, but the set of unique parameter combinations 𝐈 must be extended 

accordingly attaching at each unique present-time combination, all the possible 

sequence of past parameters within a finite time interval 𝜏, as in Equation 4.8. This 

can easily result in a combinatory explosion so that the cardinality of 𝐈 is extremely 

high, which has an impact on analysis total time, real-time computational load and 

memory occupancy. 

 

 𝐢 = [𝑖! 𝑡 , 𝑖! 𝑡 ,… , 𝑖! 𝑡 ,… , 𝑖! 𝑡 − 𝜏 , 𝑖! 𝑡 − 𝜏 ,… , 𝑖! 𝑡 − 𝜏 ] (4.8) 

 

The first branch that we consider in the DMI taxonomy discriminates between 

sound generators and sound processors. All sound synthesis devices belong to the 

first category, while in the second we have devices such as equalizers, filters, 

compressors, reverberators, delays, phasers and flangers. Synthesizers are often 

equipped with simple effects that can be applied to the output sound, while effects are 

often composed by the cascade of two or more basic effects. Therefore we define the 

macro categories, to include the composite devices, as follow: 

• sound generators: any chain of sound synthesis plus sound processing 

devices that generates an output sound given as the input control 

parameters only; 
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• sound processors: any chain of sound processing devices that, 

independently of the control parameters, always require an input audio 

signal to present sound at the output. 

 

The presence of a sustain phase in the global amplitude ADSR envelope 

discriminate between sustained and decaying sound generators. In the first case after 

the triggering signal such as a note-on message, the sound is generated indefinitely 

until another signal, a note-off message, stops the sustain phase and starts the release 

phase, so that the sound is terminated. In the second case the decay phase sets the 

amplitude back to zero, therefore note-off messages are irrelevant and the total 

duration time of the sound is fixed by the attack time plus decay time. The acoustic 

equivalents for the sustained category are wind and bowed strings instruments, while 

plucked strings and percussive instrument are typically decaying. We can further fork 

two categories by the constant or modulated characteristic of the timbre during the 

sustained phase. While certain DMIs produce a clearly steady timbre over the sustain 

phase, with invariant amplitude and phases of frequency components, and an 

identical waveform for every cycle, others generate periodic fluctuations of timbre 

perceptual characteristics due to the presence of explicit or implicit LFO, or aperiodic 

texture-like variation. 

Sound processors, despite their actual implementation, are perfectly described by 

a Finite Impulse Response (FIR) filter or by an Infinite Impulse Response (IIR) filter, 

usually with a decay factor in the feedback loop. Therefore these devices can be fully 

characterized by equivalent representations in the time and frequency domain. 

However the parameters they expose and the perceptual modifications they impart to 

the input sound are in one or the other of these domains. Therefore we introduce the 

categories of time domain processors such as delays and reverberators, and the 

category of frequency domain sound processors such as filters and saturators. The 

second category can be further divided in the same way as the sustained generator 

group, because the alteration of the input spectrum can be the either constant or 

varied over time. For analysis of the time domain processors this difference is not 

significant so that we hold them in a single category. We include hybrid sound 

processors or borderline cases such as phasers and flangers, in the frequency domain 

group because the specific analytical technique we use address better the low 

frequency modulations that they generate. The taxonomy proposed in this section is 

illustrated in Figure 4.6. 
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Figure 4.6: DMI taxonomy tree. 

4.3.3 DMI parameters to sonic space analysis 

In this section we introduce methods to compute the sonic space of specific DMIs, 

covering the six categories at the bottom of the taxonomy tree in Figure 4.6. In the 

prototype detailed in Chapter 6, the analytical procedures we describe next are 

completely automated and present interfaces compatible with any software or 

hardware DMI. The user interaction is limited to the selection of the analysis mode, 

which is determined by the DMI position in the taxonomy tree, by the selected 

control parameters effect on timbre perceptual characteristics, and by preference on 

interface control aspects. Unlike similar works, here the aim is not to fully 

characterize the timbre of an instrument, but to capture in the sonic space those 

perceptual aspects that change with variation of the DMI control parameters. 

4.3.3.1 Sound generators 

For all generator cases the timbre descriptor vectors 𝐝! are computed processing a set 

of timbral descriptors computed for a sequence of overlapping windows within a time 

interval 𝑇, as generalized in 4.7 and detailed in 4.9. 

 

 𝐝! = 𝑓 ζ 𝐢! ,𝑇 ≈   𝑓!"#$ 𝑓!"#$ 𝑑 𝐢! , 1 ,… , 𝑓!"#$(𝑑 𝐢! ,𝑇 )  (4.9) 

 

In Equation 4.9 𝑓!"#$()   is specific to the analysis mode while 𝑓!"#$()   computes the 

following descriptors: loudness of the 25 Bark critical bands and optionally spectral 

moments and spectral flatness, as described in Section 3.1.3.2. The centroid and the 

flatness approximate the brightness and noisiness of the timbre respectively. The 

number of bark bands is flexible and based on the formula in 4.10 (Traunmüller, 
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1990), while the loudness of each band is estimated applying the equal loudness 

contours and the cube root, as described for the PLP computation. 

 

 

𝑏𝑎𝑟𝑘 =
26.81 ∙ 𝑓!"
1960 + 𝑓!"

− 0.53 + 𝑎 

where  
𝑏𝑎𝑟𝑘 < 2        𝑎 = 0.15 ∙ (2 − 𝑏𝑎𝑟𝑘)

2 ≤ 𝑏𝑎𝑟𝑘 ≤ 20.1        𝑎 = 0
𝑏𝑎𝑟𝑘 > 20.1          𝑎 = 0.22 ∙ (𝑏𝑎𝑟𝑘 − 20.1)

 

(4.10) 

4.3.3.1.1 Steady timbre 

In this analysis case, after triggering the sound generation and once attack and decay 

phases terminate, we maintain the sustain phase to the end of the analysis interval. 

Then for each parameter combination 𝐢! we send the parameters unique combination 

to the DMI, compute the descriptors over a sequence of windows, and we set the 

relative 𝐝! to the mean of the descriptors, as in 4.11. 

 

 𝐝! =
1
𝑊!

𝐝!!

!!

!!!

            where  𝐝!! = 𝑓!"#$ 𝑑 𝐢! , 𝑘  (4.11) 

 

 𝑇 =
𝑠𝑡𝑒𝑝 ∙𝑊! + (𝑤𝑖𝑛 − 𝑠𝑡𝑒𝑝)

𝑆𝑅
 (4.12) 

 

In 4.11 the 𝑊! is the number of analysis windows fitting the analysis interval 𝑇, that 

in turn depend on the window size and step, by default at 4096 and 1024 respectively, 

and by the sampling rate 𝑆𝑅. Equation 4.12 expresses the relation between 𝑊! and 𝑇. 

Ideally for invariant timbres, sampling a single window would be sufficient, but this 

may be affected by the generation of minor measurement noise, because we cannot 

synchronize sound generation and analysis with sample precision. Thus for every 𝐢! 

the relative alignment of the window to the DMI waveform will be random. Taking 

the average over a small number of overlapping windows, typically 8 to 32, has little 

impact to the overall analysis time but it minimizes the measurement noise. 

4.3.3.1.2 Variable timbre 

The procedure to compute the timbre descriptors 𝐝!! over a sequence of windows is 

identical to the one described above, but in general we sample a larger number of 
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windows. In this case, for each descriptor in 𝐝!!, 𝑓!"#$() computes mean, range and 

oscillation frequency. The range is simply computed by the difference between the 

maximum and the minimum found in the sequence of the 𝐝!!. The oscillation 

frequency is estimated by autocorrelation, while the maximum and minimum 

detectable periods are computed as in Equations 4.13 and 4.14. To provide a more 

robust detection we assume that at least two complete periods must fall within the 

autocorrelation window. The dimensionality of the resulting 𝐝! is therefore three 

times the number of descriptors, as in 4.15. If no sharp peaks are detected in the 

autocorrelation, the oscillation of a specific feature is likely not periodic, and we set it 

to the median oscillation frequency of the other features the specific 𝐝!. This 

workaround avoids the generation of false large variabilities in the overall features 

oscillation frequency across the whole parameters set 𝐈, which may otherwise 

undermine the following dimensionality reduction stage. However if more than half 

of the total autocorrelation show no sharp peaks, we conclude that the overall timbre 

variation is aperiodic, and we remove the frequency component from 4.15. 

 

 𝑓!"!"# =
2
𝑇
   (4.13) 

 

 𝑓!"!"# = min
2 ∙ 𝑆𝑅
𝑠𝑡𝑒𝑝

,
𝑆𝑅
𝑤𝑖𝑛

 (4.14) 

 

 𝐝! = [𝐝!!"#$,𝐝!
!"#$% ,𝐝!

!"#$] (4.15) 

4.3.3.1.3 Decaying envelope 

Without a sustain phase the sequence of descriptor vectors 𝐝!! is computed from the 

beginning of the attack phase to the end of the decay. The analysis interval 𝑇 has to 

be equal to the sum of the attack and decay times. If these change within the 

parameter combination set 𝐈, 𝑇 has to be equal at least to the sum of the maximum 

attack and decay values. In this case for the 𝐝! we consider the entire temporal 

sequence of the descriptors over the amplitude envelope, as in Equation 4.16. Here 

the curse of dimensionality could be mitigated with increasing the analysis step size 

and reducing the number of Bark critical bands. 

 

 𝐝! = [𝐝!! ,𝐝!! ,… ,𝐝!!!
] (4.16) 
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For sustained instruments, if the parameters in 𝐈 also determine sonic or duration 

changes also in the attack, decay or release phases, it is possible to run two separate 

analyses. The first looks at the timbre during the sustain phase, while the second 

measures the temporal evolution of the descriptors over the attack, decay and release 

phase, sending the note-off message before the end of the decay phase, so that the 

release phase will start straight after. Again to prevent excessive dimensionality, the 

number of Bark critical bands can be lowered, and does not necessary have to be 

equal in the two analytical stages. At the end the two timbre descriptor matrices 𝐃 

can be combined in a single one, extending the features set for each entry associated 

with a vector 𝐢!. Other borderline situations are represented by DMI with sustained 

steady timbre but with control parameters enabling an LFO, thus the variable timbre 

analysis mode should be used, and vice versa, sustained variable timbre with 

parameters not chaining depth and period of oscillations can be analyzed with the 

first analysis mode. Moreover the envelope analysis mode does not necessarily have 

to extend over the whole ADSR, but can be focused into a smaller temporal sub 

window. In Figure 4.7 there are several examples of timbre descriptors 𝐝!! relative to 

a single 𝐢!, computed over a sequence of window before the respective 𝑓!"#$()   

compression, where each colored line represents a single descriptor. On the first row 

there are examples of sustained steady timbres, where is evident, except for the left 

case, minor fluctuations of the descriptors around a central value. The second row 

shows variable periodic timbres in which most descriptors are oscillating at the same 

fundamental low frequency. The third row shows the descriptors over decaying 

envelopes with sharp attack and on the fourth there are variable aperiodic texture-like 

timbres. In most cases it is possible to observe that different descriptors 𝐝!! can 

present different temporal trends within a single parameters set 𝐢!. 
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Figure 4.7: Color-coded Bark bands loudness describing the timbre over a sequence of 

analysis frames. Three examples on each row for sustained steady timbre, sustained variable 

periodic timbre, decaying timbre, sustained variable aperiodic timbre. 

4.3.3.2 Sound Processors 

Sound processor devices are usually less complex than generators and expose fewer 

control parameters, which are related to signal processing variables usually 

perceptually closer to the acoustic variation they impart to the output sound. 

Techniques to accurately measure the transfer function or the frequency response of a 

digital filter exist, but these representations do not hold significant perceptual 

relevance. The concept of timbre for a sound processor is ambiguous since they do 

not generate any sound, but the output signal is perceptually different from the input 
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one. Some characteristics of the input timbre can be smoothed, boosted or modulated. 

In other cases we have the clear perception that the sound is placed in a different 

acoustic environment. The equivalent of the timbre for a sound processor can be 

defined only in relation to an input sound, because the perceptual alteration depends 

on original sound characteristics too. For instance the perceived acoustic effect of a 

low pass filter applied on a bass guitar and on a violin is drastically different, even 

though the cutoff frequency is identical. Therefore we hold the same methodology 

introduced in this chapter for deriving a model of the sonic response, determined by a 

variation of a subset of the input parameters. We still imply no prior knowledge about 

the device but we need to define an input signal, with a time invariant timbre, to run 

the analysis on the output. Unless the user provides a specific input signal, we use 

generic test signals to fully characterize the sound processor response. 

4.3.3.2.1 Frequency domain steady and variable alteration 

For sound processors with perceptual relevance in the frequency domain we use input 

signal with full spectrum such as white, pink or brown noise, in order to analyze the 

instrument response at every frequency. White noise has a flat spectrum in which all 

frequency components are presented to the digital filter with equal energy. The power 

density of the pink noise falls off at -10 dB/octave and is proportional to 1/𝑓!". The 

spectrum is flat on a logarithmic scale since bands with width of equal intervals, such 

as octaves, have equal power. Pink noise is perceptually flat on the frequency domain 

and therefore preferred for the analysis. Brown noise has a steeper power density 

decrease, equal to -6 dB/octave, or proportional to 1/𝑓!"! . A sound processor with 

fixed noise signal at the input can be considered and analyzed as a sound generator. 

The analytical procedures described in 4.3.3.1.1 and 4.3.3.1.2 for steady and variable 

timbres can be applied here without modification. In this context we consider only 

frequency domain sound processors without ADSR envelopes, but the same method 

used for decaying sound generators can be extended and applied. External strategies 

are used for changing or modulating over time a sound effect amount such as send 

and return channels or dry and wet mix. Averaging the descriptors for each 𝐢! over a 

larger analysis interval 𝑇 is here crucial due to the implicit noisy characteristics of the 

input and output. 
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4.3.3.2.2 Time domain 

Sound processors in this category generate delayed and filtered replicas of the input 

signal. The characteristic of the output sound changes over time also with fixed input 

parameters, and may become stable only after some time if the input signal is 

invariant. Thus the techniques presented above are neither computationally and 

perceptually adequate. These effects are used to simulate acoustic environments, 

generating auditory cues suggesting a certain position, distance, movement of the 

sound source within a space characterized by sound reflections. Even though more 

efficient implementations exist, the output sound is the result of the convolution in 

the time domain of an Impulse Response (IR) with the input signal. An IR 

characterizes a acoustic environment from the perspective of one location, and in 

digital effects the control parameters allows for the modification of environmental 

properties such as virtually moving the walls apart, changing the surface material, or 

morphing the resulting IR. Auditory perception of the sound source distance is based 

on intensity, spectrum, and binaural cues, and in closed space the direct to reverberant 

energy ratio is an additional location cue, where the direct sound is considered to be 

that which arrives within the first 2-3ms only for impulse-like sounds (Chowning, 

1971; Zahorik, Brungart, and Bronkhorst, 2005). A room acoustic response is 

determined by size, shape and material, and is perceived from the characteristics of 

the early reflections and late reverberation. The transition instant between early and 

late reflections is dependent on the room characteristics as well. Moreover the 

reflections can also contribute to color the perception of the original timbre (Brüggen, 

2001). Reflections arriving with delay greater than 100ms are interpreted as different 

sounds, thus we perceive an echo. With a lower delay we are in presence of a 

reverberation because the original and reflected sounds blend together and are 

perceived as a single prolonged sound. 

All these perceptual characteristics are embedded in the IR, and also visible in 

the time domain graphical representation. For the analysis of this DMI category we 

start measuring the IR for every parameter combination 𝐢!. The input test signal is a 

Dirac or Kronecker delta, depending on the analogue or digital measuring domain, 

and we record the output, at audio sampling rate, for a duration 𝑇, which is set to the 

longest IR resulting from any parameter combination in 𝐈 or to a user selected 

temporal range. We set the mix of the sound processor to 50% dry and 50% wet so 

that the original impulse is present at the output, in order to use it to perfectly align, 

with sample precision in the digital domain, all the recorded IR. The descriptor 

vectors 𝐝! are set to the loudness of the whole IR approximated by the cube root of 
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the energy, but to reduce the excessive dimensionality we perform a down-sampling 

of the IR recording to 8KHz from the original sampling rate. As an alternative for 

reverberators it is possible to compute a compact set of features from the IR that 

includes: the total energy, the 𝑇!", amplitude and temporal position of the maximum, 

number of peaks, slope and intercept of the decay line. The 𝑇!" is the time required 

for the reflections to decay 60 dB. We observed that these descriptors generated a 

sonic representation poorly discriminative in the high dimensional space in 𝐃, when 

the IR variations are minimal. The same is observed with delay-like sound effects, 

which mostly present zero samples and few Dirac delta replicas in the IR, especially 

if measured within a digital system. In these two scenarios using the down-sampled 

IR leads to a better sonic representation. In Figure 4.8 there are six examples of 

descriptors 𝐝! related to the loudness of the whole IR down-sampled at 8KHz, for a 

reverberator and simple delay with different input parameters, on top and bottom row 

respectively. 

 

 
Figure 4.8: Impulse response loudness for a reverberator (top) and a delay (bottom) with 

different input parameters. 

4.3.3.3 Channel, pitch and velocity 

DMIs usually support at least a stereo output, while the analysis we described is 

based on a single channel. However the outputs are either derived from stereo 

imaging techniques applied to a mono signal or by independent and parallel synthesis 

or processing chains, but attached to the same control parameters. In both cases the 

two signals present differences, but from individual listening the timbre perception is 
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identical. Thus we analyze only a single channel by default, but in a different context 

the user can run the analysis on the sum of the individual channel signals, or on each 

signal individually and then combine the two descriptor matrices 𝐃. 

Synthesizers are often played via a piano-like keyboard, and therefore the 

generated sound depends also on which key is depressed and on the pressure applied 

on the key. In the MIDI protocol, these represent pitch and velocity parameters 

respectively. If a DMI exposes these parameters, in the analysis we set them to the 

typical default values, the note middle C and the velocity 100 out of a maximum of 

127. As an alternative, the user can define these reasonably in the middle of the range 

used in performance. In both cases how representative the sonic space is when pitch 

and velocity are different can represent a theoretical and practical issue. Previously 

we discussed how the timbre embraces all acoustic characteristics that are not pitch 

and loudness, however running the analysis with a pitch a few octaves higher or 

lower returns quite different sonic spaces. The scientific debate on how to understand 

the pitch and timbre relationship has been going on for a century. Schoenberg (1922) 

considers the pitch as a fundamental dimension of the timbre, while according to Von 

Helmholtz (1954) these are completely separate and independent entities. Other 

studies suggest that the spectral energy distribution, which determines the timbre, and 

the pitch are independent in most cases. However this statement holds in harmonic 

tones in which the pitch is clearly perceived, but is not true for inharmonic spectrum 

in which the pitch is uncertain or multiple and is determined by the balance of the 

spectral components (Plomp and Steeneken, 1971; Risset, 1978a, 1978b). We use a 

single and fixed pitch sonic representation even if this is varied in performance. As an 

alternative multiple analysis can be performed for different pitch ranges, followed by 

dynamic selection of the mapping derived from the 𝐃 associated with the currently 

played chromatic scale interval. 

To emulate the behavior of acoustic instruments, velocity is usually mapped to 

the maximum value of the ADSR amplitude in order to generate louder sound when 

the key is depressed with more energy. However acoustic instruments generally 

respond nonlinearly to higher amounts of energy, which usually results in the 

presence of additional higher order harmonics. Thus often the velocity is also mapped 

to a filter envelope or other parameters. Variation of the loudness does not greatly 

affect the timbre perception, while the filter cutoff frequency does. Therefore the 

sonic space we compute is representative if the velocity is mapped only to loudness 

related parameters, or if in the performance the velocity values are maintained 

relatively close to those used in the analysis phase. 
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4.4 From sonic space to parameter space 

The sonic space derived with the methodology presented above is high dimensional 

and unsuitable to implement musical control. Appropriate dimensionality reduction is 

vital because, as we described in the previous chapter, the vocal GC provides a 

number of control signals drastically lower than the dimensionality of 𝐃. Although 

with a GC presenting more outputs, the cognitive overhead to interact with spaces of 

four or more dimensions is not trivial to manage (Van Nort, 2009),  even repeating 

identical gestures to produce similar sounds is challenging. If we reduce the sonic 

space 𝐃 to a number of components lower than the number of parameters in 𝐈, and we 

retrieve the DMI parameter vectors 𝐢 from 𝐃, then we obtain a dimensionality 

reduction of the control space plus the adaptation to the parameters-to-sound 

characteristics of the instrument, without loss in parameter combinations. 

4.4.1 Low dimensional sonic space 

To measure the intrinsic dimensionality of the sonic descriptor space 𝐃 and to reduce 

it to 𝐃∗, in which the 𝐵 entries are 𝑀 dimensional as in Equation 4.17, we use the 

same techniques presented for the voice data. The use and preservation of the 

geodesic distance in the reduced space, guaranteed by Isomap NLDR, provides a 

drastic improvement in the representation of the timbre data, also repeating the early 

MDS experiments of Grey and McAdams (Burgoyne and McAdams, 2007, 2008). 

 

 𝐃∗ = 𝐝∗!,𝐝∗!,… ,𝐝∗! =
𝑑∗!,! … 𝑑∗!,!
… … …

𝑑∗!,! … 𝑑∗!,!
 (4.17) 

 

Over a set of 34 DMIs analyzed with different modes, we observed that the intrinsic 

dimensionality of the sonic space is always below 7, and between 2 and 3 in most 

cases. The intrinsic dimensionality is usually higher when we analyze the entire ADR 

envelope for decaying sound generators. The dimensionality is independent of the 

number of DMI control parameters 𝑃 which ranged between 2 and 8 in our study. 

However the low dimensional timbre space provided by Isomap concentrates more 

variance, or energy, in the first few components, which are more discriminative than 

those obtained with PCA or other techniques. An example of this recurrent 

observation is in Figure 4.9, in which the histograms show the percentage of variance 

distribution on each dimension of the lower dimensional space computed with PCA 
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and Isomap, on left and right respectively, starting from the same high dimensional 

timbral data. In Figure 4.10 there is a simple but representative example of timbre 

space derived from a single DMI parameter. The perceptual variation of a filter with 

variable cutoff frequency applied to a square wave oscillator is reduced by PCA, on 

the left, to a three dimensional curve, while Isomap, on the right, rearranges the data 

on a straight mono-dimensional line, where 99% of the variance is concentrated on 

the first component. The number of entries in the descriptor matrix 𝐃 can be 

extremely high, as well as the dimensionality, and these are usually higher than those 

in the vocal-gesture low-level feature matrix 𝐕𝑮. This implies higher Isomap 

complexity, but it does not affect the VCI4DMI real-time computational cost because 

on the DMI mapping side no new high dimensional vectors need to be reduced. 

 

 
Figure 4.9: Distribution of percentage of total variance for PCA (left) and Isomap (right) 

individual components applied to reduce the dimensionality of the same timbre data. 

 

 
Figure 4.10: PCA vs. Isomap reduction of timbre space generated by single DMI parameter 

variation, with reduced sonic space (top) and components variance distribution (bottom). 
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4.4.2 DMI parameters retrieval 

The gesture, voice in our case, can generate a vector of DMI parameters from the 

sonic space simply by using a properly scaled GC output 𝐠𝐜𝐨𝐮𝐭 as a search coordinate 

in the reduced descriptor space 𝐃∗, both 𝑀 dimensional, and picking the parameter 

vector 𝐢 associated to the closer reduced descriptor vector 𝐝∗. In Figure 4.11 we show 

six examples of DMI sonic spaces reduced to their three principal Isomap 

components. 

 

 
Figure 4.11: Examples of DMI sonic space reduced to the 3 principal Isomap components. 

The top four spaces are related to synthesizers subject to the variation of four to five 

parameters, the last two are related to reverberator and low pass filter parameters variation. 
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For simple cases is possible to heuristically find the relationship between perceptual 

timbre, visual sonic space representation, and DMI parameters. For example in the 

low pass filter sonic space of Figure 4.11, generated changing only cutoff frequency 

and resonance of a low pass filter, and analyzed with a relative low parameter 

resolution, the resonances span along the clustered parallel arches, each representing 

a constant cutoff frequency. The DMI control method described above is intrinsically 

affected by a serious drawback. There is no guarantee that the relationship between 

perceptual timbre and parameters is bijective. Even though our model creates a 

unique reduced descriptor 𝐝!∗ for each parameters unique combination 𝐢!, the relation 

may not be unique in the other direction, which is used here to retrieve the DMI 

parameters. Different combinations can generate identical or similar sounds, with 

relative coordinates very close in the descriptor space 𝐃, but far in the parameter 

space 𝐈. In theory this is not an issue because the sound remains equal even if the 

parameters are different. However in most DMI algorithm implementations, wide 

step parameter variation generates output glitches, unless the instantaneous and large 

value parameter variations are applied to synthesis subsections not contributing to the 

output timbre at the moment. For example in the serial modulation chain of 

oscillators of a FM synthesizer, if the amplitude of a modulator is zero, the parameter 

of the upstream oscillators can be arbitrarily varied without changing the synthesized 

sound. Moreover, as we will detail later, to smooth the VCI4DMI output for the DMI 

we interpolate linearly in the time domain between consecutive values at a higher rate 

than the parameter generation. The non-bijective relation is thus even more 

detrimental here because for a short interval during the temporal interpolation, the 

DMI parameters are likely to determine a timbre inconsistent with the target one. This 

shortcoming is addressed by the specific mapping technique that we present in the 

next chapter. 

4.4.3 Analysis parameters resolution and spatial interpolation 

The total time 𝑇!"!#$, in 4.18, to measure the descriptor matrix 𝐃 is linearly 

proportional to the number of unique combinations 𝐵, which in turn depends on the 

range and resolution of individual parameters, as in 4.6. For the time domain sound 

processors the term 𝑇 in Equation 4.6 is equal to the maximal length of the IR, while 

for all other modes is described in Equation 4.12. The term 𝑇!"# is the interval that 

we wait before starting sampling analysis windows after the DMI receives a new 

parameter vector 𝐢!. This interval, manually defined, allows the sonic output to 
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stabilize or in ADSR mode it allows the tail of the sound at the previous step to 

terminate. The 𝑇!"#$ is the interval necessary to the automatic analysis chain, 

described in Chapter 6, to exchange synchronization acknowledge message, usually 

small and outside the user control. 

 

 𝑇!"!#$ = (𝑇 + 𝑇!"# + 𝑇!"#$) ∙ 𝐵 (4.18) 

 

Considering three full range parameters with 7-bit MIDI resolution, we have more 

than two millions unique combinations. Considering only a single 1024 samples 

analysis window and no additional adjustment or sync time, it requires more than 12 

hours to measure 𝐃. Moreover large numbers of parameter unique combinations 

impact on the VCI4DMI real-time memory occupation and computational load. 

Unless the user aims for a full characterization of the DMI, it is possible to reduce the 

analysis time without losing DMI control precision by limiting the parameter 

resolution in the analytical stage and interpolating at the output. We apply the IDW, 

so that the parameter vector 𝐢𝒐𝒖𝒕 depends on the values of the 𝑁 neighbors 𝐢!, 

determined and weighted by the relative distances in the reduced sonic space 𝐃∗, 

described by Equations 4.19 and 4.20. The strategy to determine the 𝑁 neighbors and 

the function 𝑚() that maps the GC output to the reduced space 𝐃∗ is presented in the 

next chapter. 

 

 𝐢𝒐𝒖𝒕 =
𝐪! 𝑚 𝐠𝐜𝐨𝐮𝐭 ∘ 𝐢!!

!!!

𝐪!(𝐝∗)!
!!!

 (4.19) 

 

 𝐪!(𝐝∗) =
1

𝑚 𝐠𝐜𝐨𝐮𝐭 − 𝐝!∗
! (4.20) 

 

The IDW worsens the effect of the non-bijective parameters-to-sound relationship. 

This is illustrated in Figure 4.12, where the coordinates determined by the mapping of 

the GC output 𝐠𝐜𝐨𝐮𝐭, in blue, falls in the middle of the four 𝐝∗ neighbors, in red, 

which generate similar sounds but with entirely different parameter combination, 

which we always consider in the scaled range [0,1]. In this case the IDW output 

returns a parameters set 𝐢𝒐𝒖𝒕 that is far from all the 𝐢! associated with the neighbors, 

and it likely generates a sound inconsistent with that position in the sonic space. The 

IDW interpolation between sonic and parameter space assumes that a sound in a 

specific sonic space position inherits characteristics of the immediate neighbors, but it 
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requires that these are relative neighbors in the parameter space too, which is not 

always guaranteed. This issue is addressed as well within the mapping technique in 

the next chapter. 

 

 
Figure 4.12: Illustration of the detrimental effect of the non-bijective sound-to-parameters 

relationship on IDW interpolation between sonic and parameter spaces. Different parameter 

sets with very different values generate similar sounds, but interpolated values between those 

parameter sets may be in radically different parts of the sound space as represented by the 

sound descriptors. 

 

In real use cases we observed that the IDW technique is effective to make up the 

limited analysis resolution. If the analysis time is an issue and needs to be limited, it 

is advisable to reduce the parameters resolution but still allow adequate time per 

combination to get a precise timbre representation, allowing longer adjustment time 

and more sampling windows. Limiting the total time by just reducing the analysis 

time per parameter combination 𝑇, may generate a less precise and noisy 

measurement later reflected in the sonic spaces. Regardless of the number of DMI 

variable parameters, we usually do not get control or mapping improvements with 

more than 10K entries in the descriptor matrix 𝐃, which provide reasonable analysis 

time and limited computational load in the runtime VCI4DMI. Due to the 

interpolation we obtain satisfactory usability also with 𝐃 containing as few as 1k 

entries. On modern CPUs, common synthesis algorithms demand only a small 

fraction of the computational power, and therefore it is theoretically possible to 

shorten the analysis time to a small fraction by running offline at a rate higher than 

the real-time audio. However here we consider the DMIs as a black box over which 

we have no control and access to internal algorithms, which requires that the analysis 

be done at the audio rate at which the DMI generates sound samples. 
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4.5 Evaluation and validation 

In order to validate our DMI analysis method and the strategy to reduce the 

instrument control space, next we present results for a set of 34 different DMIs 

implemented in 14 different state-of-the-art commercial software digital instruments. 

The instruments included in the set, as well as the parameters selection and settings 

for the perceptual sonic analysis were selected for their sound aesthetic characteristic, 

breadth of timbre morphing, and complexity of multi-parametric control challenging 

to achieve with traditional interfaces. Most of these were also used in performances 

context described in Chapter 6. Although in this section we draw generic conclusions, 

the results are presented for individual instruments, because a statistical summary 

here would be misleading due to incompatible DMI spaces sizes, entries, parameters, 

and analysis. Instead, we identify trends in the extended set of measurements. 

In Table 4.1 we present the DMI evaluation set, detailing for each case the 

generator/processor type, the synthesis/processing algorithm, the number of variable 

parameters, analysis mode, number of descriptors, analysis frame per parameter 

combination and resulting number of entries in 𝐃 and 𝐈. Each instrument is associated 

with a numeric ID that will be used to address the specific DMIs in other tables. 

Table 4.1 also includes the intrinsic dimensionality of the timbre descriptor space 𝐃, 

the number of Isomap components holding 95% of the total variance of 𝐃∗, the 

maximum correlation found between any descriptor and any parameter within 𝐃 and 

𝐈, and their relative indexes. As expected the results are strictly dependent on the 

specific DMI context, and this is confirmed as well from the further measurements 

detailed later. There is no relationship between numbers of parameters and 

characteristics of the sonic space, providing motivation for our strategy of providing 

DMI dependent mappings. 

The intrinsic dimensionality measure and Isomap dimensions variance shows 

that a number of components in 𝐃 drastically lower than the space dimensionality, 

usually below 4 and not related to the number of control parameters, is sufficient to 

represent the timbre variation of the DMI sound. The curse of dimensionality is 

evident when a high number of descriptors per state are included in 𝐃 such as for the 

decaying timbre and IR analysis modes. However in most cases forcing the reduction 

to two or three dimensions still provides a usable mapping. 
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1 generator FM 6 steady 25125 8 6399 5.01 9 0.80 2125
2 generator virtual;modular 4 steady 24124 100 1296 2.61 1 0.93 1123
3 generator PCM;smp.;based 4 steady 25125 16 3584 3.49 3 0.85 2115
4 generator FM 6 steady 27127 50 4840 2.95 1 0.77 1127
5 generator virtual;modular 2 steady 21127 16 2601 2.99 8 0.26 116
6 generator virtual;analog 3 steady 15115 16 528 2.15 3 0.91 311
7 generator granular 3 steady 25125 20 1001 2.49 8 0.82 3118
8 generator virtual;modular 4 steady 24124 25 1125 2.67 1 0.93 1123
9 generator FM 3 steady 25125 32 1331 3.76 1 0.97 2115
10 generator FM 3 steady 24124 64 1248 2.28 1 0.89 217
11 generator FM 3 steady 25125 32 616 2.66 1 0.90 2118
12 generator physical;model 3 decaying 3011500 50 125 40.2 16 0.95 3128
13 generator wavetable;based 7 decaying 2511250 50 11664 6.03 357 0.90 611
14 generator granular 4 decaying 1611600 100 4116 11.3 716 0.57 214
15 generator wavetable;based 4 decaying 131650 50 5324 3.78 2 0.98 411
16 generator PCM;smp.;based 3 decaying 2211100 50 385 2.39 8 0.99 212
17 generator virtual;analog 3 decaying 251750 30 715 4.37 128 0.99 312
18 generator virtual;analog 4 decaying 2511000 40 576 7.03 77 0.91 1120
19 generator granular 4 decaying 251800 32 3402 40.8 385 0.87 3124
20 generator wavetable;based 4 decaying 251875 35 900 6.02 193 0.92 3116
21 generator physical;model 8 decaying 2511000 40 14400 67.2 4 0.92 312
22 generator FM 6 variable 30160 50 4840 2.82 1 0.77 5127
23 generator FM 4 variable 29158 200 1000 2.47 6 0.95 1120
24 generator virtual;analog 3 variable 29187 75 252 2.52 8 0.93 1119
25 generator physical;model 3 variable 27181 1500 343 3.10 1 0.74 3116
26 processor parametric;EQ 4 fq.;steady 24124 16 270 4.98 3 0.99 311
27 processor pysical;resonator 4 fq.;envel. 161512 32 648 4.70 10 0.86 313
28 processor flanger 2 fq.;steady 28128 16 378 2.28 1 0.97 1119
29 processor virtual;amp 8 fq.;steady 25125 32 7200 4.09 4 0.80 7110
30 processor low;pass 2 fq.;steady 28128 16 378 2.28 1 0.97 1119
31 processor delay;&;reverb 3 time;IR 24k124k 1 288 23.9 93 0.97 n.a.
32 processor delay 2 time;IR 16k116k 1 315 61.2 27 0.45 n.a.
33 processor delay;&;reverb 3 time;IR;ft. 717 1 220 1.39 6 0.90 213
34 processor reverb 3 time;IR;ft. 717 1 1330 1.83 1 0.84 112  
Table 4.1: Characteristics of the DMI evaluation set, including parameters-to-sound analysis 

settings, and sonic space dimensionality. 

 

The maximum correlation parameter-descriptor is usually close to 1. Such a 

value represents almost a direct sonic control of a perceptual timbre dimension. This 

measurement, properly extended, can provide useful feedback on parameters-to-

sound relationships. Further, we observed that parameters might also have a low 

maximum correlation with any timbre descriptors, which indicates control space 

dimensions with little sonic relation, which we aim to hide from the user. 
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Additional measurements for the DMIs sonic spaces Isomap reduction to 2D and 

3D are detailed in Table A.1 in the Appendix A, and summarized in Figures 4.13-15 

below. With few exceptions and regardless of the dimensionality of 𝐃 the lower 

dimensional sonic space holds a large percentage of the total information, measured 

as the components’ variance. This is usually approximately 80% for 2D and 90% for 

3D, visible in the rising trend in the left plot of Figure 4.13 and detailed in the first 

column of Table A.1. These suggest that the drastic dimensionality reduction results 

in only a small loss in sonic space discrimination. After the reduction some entries 

may overlap with others descriptor vectors. Browsing the space with a fine step 

allows us to find at least a coordinate nearest neighbor to every 𝐝!∗ in 𝐃∗, and all 

parameter combinations in 𝐈 can be retrieved, but such a fine step resolution is 

unlikely in a musical interface. The practical parameter loss is measured using a 

larger step resolution, and results are illustrated in the right plot of Figure 4.13 and 

detailed in the second column of Table A.1. In particular we sampled the space over a 

grid that divides each component of the sonic space into 128 identical intervals. The 

rising trend in the plots shows that losses are lower when the sonic control is 

implemented in the 3D reduction rather than 2D. Losses are still high for some DMI 

cases and need to be addressed with a more elaborate mapping strategy. 

 

 
Figure 4.13: 2D and 3D Isomap reduced sonic space percentages of total variance (left) and 

percentage of combinations covered controlling the DMI from the sonic space (right). The 

rising trend shows that the 3D cases outperform the 2D ones, especially for the space 

coverage. Each colored line represents a different DMI case. 

 

In the left plot of Figure 4.14 and in the third column of Table A.1 we show the 

average distance of every 𝐝!∗ from its nearest neighbor 𝐝!!!!∗  in the original and 

reduced spaces. The distance measurement is normalized to the space dimensionality 

and thus the two numbers are comparable. As expected, average distance decreases 

with the spatial dimensionality reduction, which clusters the data. We repeated the 
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same measurement computing the average normalized distance between the 

parameters vectors 𝐢! and 𝐢!!!! related to the neighbor pairs in 𝐃∗. The results, 

illustrated in the right plot of Figure 4.14 and detailed in the fourth column of Table 

A.1, show an opposite trend that demonstrates two potential drawbacks of this control 

strategy. First, the absolute average distance in the parameter space is generally larger 

than the one in the sonic space, reflecting the situation when similar sounds may be 

generated with very different parameters sets. Secondly, the average distance in the 

parameter space also shows an opposite trend, increasing while reducing the 

dimensionality. This suggests that when reducing the dimensionality the neighbors of 

𝐝!∗ might change, and this adversely affects the overall non-bijective parameters-to-

sound relationship. 

 

 
Figure 4.14: Pairs of nearest neighbor entries in sonic space (2D, 3D, and full dimensional) 

normalized average distance (left), and normalized average distance of the related parameter 

vectors (right). The opposite trend in the two plot shows that the dimensionality reduction 

contributes to clustering the data and worsening the non-bijective parameters-to-sound 

relationship issue. Each colored line represents a different DMI case. 

 

We mentioned that the non-bijective parameter-to-sound relationship issue is 

more problematic when using IDW output interpolation for the DMI parameters, as 

demonstrated in the results detailed in the last column of Table A.1 and illustrated in 

Figure 4.15. The falling trend in the plot shows that the difference between the 

parameter outputs interpolated using distance weights from original sonic space and 

from the reduced space is generally higher for lower reduction. This has been 

measured by generating 1000 random coordinates in 𝐃, projecting these also to 𝐃∗, 

and using the set of points for interpolating the parameter output from both spaces. 

The interpolation here is performed with a number of entries equal to 1% of the space 

cardinality. The DMI control from reduced sonic space is possible and provides 

effective reduction of the control space for any instrument. The drawbacks identified 
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here are addressed in the generative and case-specific mapping method presented in 

the next chapter, which also addresses other issues arising from the arbitrary 

distribution of the sonic space. Moreover we will introduce a technique to limit the 

generation of parameter discontinuities due to the non-bijective relationship 𝐝!∗ to 𝐢!. 

 

 
Figure 4.15: Average difference between IDW parameters interpolation using distance 

weights from original sonic space and from reduced space, for 2D and 3D cases. The 

differences are high in absolute value and the trend is falling in the majority of cases, showing 

that the non-bijective parameters-to-sound relationship affects the IDW precision, which is 

worst for more extreme dimensionality reduction. Each colored line represents a different 

DMI case. 

4.6 Summary 

In this chapter we presented a holistic framework to generate a model of the 

perceptual sonic response of an instrument, determined by the variation of a subset of 

input parameters. We introduced our DMI taxonomy to provide adequate analytical 

strategies depending on the DMI characteristics. Moreover we described the control 

strategy we developed for the VCI4DMI, which is based on the target instrument 

timbre space and provides adaptation to the parameters-to-sound characteristics and 

dimensionality reduction of the control space with no combination loss. The strategy 

is compliant with our interface principles and requirements, because it provides 

natural and expressive control over an arbitrary number of DMI parameters with the 

limited number of control signals that the vocal GC provides. We note, however that 

the sonic spaces generated with the proposed method do not necessarily require the 

presence of a voice-controlled system. These can be exploited in generic interfaces of 

any kind for reducing and adapting the control space, or for other analysis-synthesis 

purposes. In Figure 4.16 we illustrate the summary of the analytical procedure 

introduced in this chapter. 
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Figure 4.16: Illustrated summary of the DMI parameters-to-sound analysis procedure.  
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Chapter 5  
 

Mapping and Search in the Sonic Space 
 

 

In this chapter we describe the mapping strategy that we develop to adapt the 

projection of the GC output onto the sonic space of a specific DMI, from which we 

retrieve control parameters. The intermediate mapping layer that we describe here 

maximizes the overlap between two heterogeneous spaces with arbitrary shape and 

distributions, representing the voice and the instrument sound respectively. This 

linearizes the response between vocal-gestural control and variation of the perceptual 

characteristics of the DMI output. Moreover here we address issues related to the 

non-unique relationship between DMI parameters and output sound, which implicitly 

affects any synthesis control strategy based on sonic representations. We begin the 

chapter with motivating principles and by describing the method for rearranging the 

data in the sonic space, computed as described in the previous chapter. The projection 

to the sonic space is then implemented with an ANN trained to model the nonlinear 

regression from the redistributed space back to the original one. It follows the 

descriptions of a set of operational modes and parameter retrieval strategies that we 

developed for the VCI4DMI, which aims to minimize the implicit drawback of the 

non-bijective relationship between control and sound in DMIs. Finally, we present 

numerical results and observations to validate the proposed method over a set of 

cases with real DMIs. 

5.1 Intermediate standard mapping layer 

In Chapter 3 we showed that vocal-gestures are continuous multidimensional 

trajectories, while in Chapter 4 we represented the DMIs response with a perceptual 

sonic space, used to implement transparent device control. Vocal and sonic spaces, 

represented by 𝐕𝑮 and 𝐃 respectively, besides being computed with different 

techniques, are very likely to differ in dimensionality, number of elements, enclosing 

shape, and internal data distribution. In the VCI4DMI a proper transition between the 

two spaces is crucial to provide expressivity, non-trivial control, natural and linear 

response. However 𝐕𝑮 and 𝐃 are case-dependent, and these can vary within same 

user and instrument, when providing a different set of training-vocal gestures or 
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targeting other control parameters in the same DMI. Therefore we develop a 

generative and unsupervised mapping technique to learn the specific transformation 

from the vocal-gesture set 𝐕𝑮 to the instrument sonic response 𝐃, in accordance with 

our adaptive, generic, and automatic setup principles for the interface. 

A mapping function 𝐕𝑮 to 𝐃 ties a specific control, expressed in voice timbre 

variation, with a specific DMI. Moreover due to the arbitrary characteristic of the 

data in these spaces, definition and computation of the mapping function can be 

challenging. Therefore we separate the mapping problem into two halves (Wanderley, 

Schnell, and Rovan, 1998), finding individual transformations of 𝐕𝑮 and 𝐃 into 

isomorphic spaces with fixed and identical distribution. This allows a simple one-to-

one mapping to project coordinates of one space onto the other one, and it splits the 

VCI4DMI learning process into two separated parts, permitting the use of specific 

voice maps with different instrument maps and vice versa, resulting in a further 

simplification of the interface setup. A uniformly distributed hypercube represents the 

simplest choice for the intermediate transformation stage. This has dimensionality 𝑀 

to which voice and DMI data have been already reduced via Isomap, as described in 

the previous chapters. In Figure 5.1 we illustrate the principle of mapping from the 

vocal-gesture lower dimensional space 𝐕𝑮∗ to the sonic lower dimensional space 𝐃∗ 

through the intermediate space. The two mapping stages transform vocal-postures 

into stationary sonic coordinates and DMI parameters, and transform vocal-gestures 

into trajectories in the sonic space that in turn vary and modulate DMI parameters. 

 

 
Figure 5.1: Illustration of the mapping flow from lower dimensional vocal-gesture space VG

* 

to sonic space D* through transformations to an intermediate uniformly distributed hypercube. 
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The SOG method presented in Chapter 3 already implements a redistribution of 

the vocal-gesture spatial data into a uniformly distributed hypercube, because the 

particular application and training of the SOM adapts the output lattice to the local 

topology and density of the data. The interpolated relative position on the output 

lattice is already a coordinate into the intermediate layer space. Therefore this chapter 

is dedicated to the learning procedure to derive the DMI specific mapping function 

𝑚() in 4.19, which maps the GC output 𝐠𝐜𝐨𝐮𝐭 into the DMI reduced sonic descriptors 

space 𝐃∗, which is the missing block in the VCI4DMI chain. The mapping of the two 

spaces to the same intermediate shape and distribution are conceptually diverse, and 

thus achieved with different techniques. Firstly, for the voice data the transformation 

is direct while the VCI4DMI requires the DMI case-specific sonic space mapping 

function 𝑚() to implement the inverse conversion from the uniform hypercube back 

to the original sonic space, as illustrated in Figure 5.1. The model learned from the 

voice considers the possible variability that human generated data can present. 

Moreover it has to respond to new data not presented in the training examples 

according to the knowledge derived during the learning phase. On the instrument side 

we have a deterministic digital machine, fully analyzed and characterized, used 

within the parameters limits priory defined. For the runtime interface there is no new 

or unknown DMI sonic data, and there are no outliers or undesired entries in the sonic 

data we use to learn the mapping. The direct projection of the GC output onto the 

uniform redistributed sonic space 𝐃𝑼∗  can be used for parameter retrieval. However 

since we interpolate with the IDW method in the output in the parameters space 𝐈 

using the distances in the sonic space as weights, reverting back to the original 𝐃∗ we 

obtain weights more accurate and coherent than in 𝐃𝑼∗ . This is also important because 

the interpolation from 𝐃𝑼∗  can further adversely affect the non-bijective parameter-to-

sound relationship. 

5.1.1 Linear perceptual response 

If we suppose that the mapping 𝑚() is any linear function and it translates 𝐠𝐜𝐨𝐮𝐭 

coordinates into 𝐃∗, the resulting system will probably present: 

• sub-regions with entries in 𝐃∗ not reachable for any value of 𝐠𝐜𝐨𝐮𝐭, or a set of 

𝐝∗ not nearest neighbors to any projected 𝐠𝐜𝐨𝐮𝐭; 

• ranges of 𝐠𝐜𝐨𝐮𝐭 projected outside 𝐃∗, or projections with a relatively distant 

nearest neighbor 𝐝∗; 



 

 136 

• linear and constant rate 𝐠𝐜𝐨𝐮𝐭 trajectories generating a non uniform 

perceptual sonic variation of the DMI output, or trajectories that are projected 

to 𝐃∗ traverse sub-regions with different 𝐝∗ density. 

 

These shortcomings are due to the arbitrary shape and irregular distribution of the 

reduced sonic space 𝐃∗, clearly visible in the examples of Figure 4.11. Browsing 𝐃∗ 

to retrieve the related DMI parameters 𝐢, with a simple 2D touchpad mapped with 

linear scale and offset, would result in different sensitivity and unresponsive areas 

across the surface, detrimental to any musical application of this control strategy. We 

address these issues at first finding a homotopic transformation of 𝐃∗ into the 

uniform distributed space 𝐃𝑼∗ , and then the nonlinear DMI specific mapping function 

𝑚() is implemented with an ANN, trained with 𝐃𝑼∗  and 𝐃∗ as input-output pairs. 

Thus the ANN learns the inverse of the homotopic transformation that distributes the 

arbitrary sonic space into a uniformly distributed hypercube. 

In the example shown in Figure 4.10, the analysis is related to a single DMI 

parameter, which is the cutoff frequency of the low pass filter applied to a waveform 

with lower energy in the higher harmonics. The relationship between cutoff 

frequency, on the horizontal axis normalized in [0,1], and the perceptual principal 

component of the Isomap on the vertical axis, is nonlinear, as represented on the left 

plot in Figure 5.2. We observe that for cutoff frequency within [0.6,1] the perceptual 

variation is small, while it is considerably higher in the range [0,0.2], which 

accurately represents the user’s perception when mapping this parameter on a linear 

fader. As expected, we observe that the principal component of the Isomap is highly 

correlated with the sound brightness, inverted by the Isomap on the principal 

component axis. For this simple case in which 𝐃∗ is mono dimensional, the three 

shortcomings presented above can be addressed by a 𝑚() derived from the 

distribution of the reduced sonic space, represented by the histogram in Figure 5.2. 

There the black line represents the integration of the histogram complement, defined 

as the difference of each bin value with the maximum bin value, and it represents the 

inverse of 𝑚(). This mapping function projects the control signal, in the range [0,1], 

on the vertical axis of the histogram plot, to a spatial coordinate of 𝐃∗, in the 

horizontal axis, used to search the nearest reduced sonic entry 𝐝∗ and retrieve the 

associated parameter set 𝐢. With this method we obtain a linear relation between the 

adapted control parameter and the perceptual feature variation, clearly visible in the 

right plot of Figure 5.2. The mapping described here is represented in Equations 5.1-

3, in which 𝑑!∗ and 𝑔𝑐!"#! are the mono dimensional coordinates of 𝐃∗ and scalar 
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output of the GC respectively. The mapping implemented in this manner determines a 

relationship between gestural controller and reduced sonic space coordinates 

proportional to the local data density in 𝐃∗. The variation across the 𝑔𝑐!"#! range 

[0,1] results in larger step increase in 𝑑!∗ where the local density is high, and smaller 

where the local density is low. Regions of the reduced sonic space 𝐃∗ with high 

density are determined by many DMI parameters producing very similar sounds and 

should be browsed at faster pace since the perceptual variation they determine is 

minimal and vice versa. 

 

 𝑚!! 𝑑!∗ = ℎ𝑖𝑠𝑡!"#$(𝑑!∗) ∙ 𝑑𝑑!∗ (5.1) 

 

 ℎ𝑖𝑠𝑡!"#$ 𝑥 = max
!
(ℎ𝑖𝑠𝑡 𝑥 )−ℎ𝑖𝑠𝑡 𝑥  (5.2) 

 

 𝑑!∗ = 𝑚(𝑔𝑐!"#!) (5.3) 

 

 
Figure 5.2: Linearization of the perceptual mapping in a single dimension. The DMI 

parameter versus perceptual principal descriptor (left), adapted control parameter versus 

perceptual principal descriptor (right), sonic space principal component of the Isomap 

histogram and mapping function (center). 

5.1.2 Sonic descriptors spatial neighborhood coherent 

redistribution 

The mapping approach described above is equivalent to redistributing the data in 𝐃∗ 

using the rank-transform method to uniform distribution, and learning the inverse of 

this transformation, which represents the DMI specific mapping function 𝑚(). The 

rank-transformation changes the coordinate 𝑑!∗ into 𝑑!!!∗ = 𝑧, in which 𝑧 is the rank 

of that 𝑑!∗ within the entire set 𝐃∗, so that 𝑑!∗ is the 𝑧!! largest value in 𝐃∗. The 

change of coordinate system presents a different range, irrelevant for the mapping 
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purposes, but preserves the neighborhood of the original space, which is crucial here. 

The rank-transform is scalar, so for multidimensional 𝐃∗ it requires a separate 

application for each component, but it generates joint uniformly distributed data if 

and only if each component is statistical independent from the others. Two examples 

of rank-transformation applied to 2D computer generated data with 16000 entries are 

illustrated in Figure 5.3. In the top case the data is drawn from a multivariate 

Gaussian random generator and the rank-transformation has rearranged the data into a 

uniformly distributed square. This is due to the statistical independence of Gaussian 

distribution components, and those of any linear combination of Gaussians. In the 

bottom case the data is drawn from three different Gaussian multivariate generators, 

with non-statistically independent components. The rank-transformation helps to 

spread the data but is still far from presenting uniform distribution. 

 

 
Figure 5.3: Two examples of rank transform applied to Gaussian data (top) and non-Gaussian 

data (bottom). 

 

Since we cannot assume statistical independence of the 𝐃∗ Isomap components, we 

further rearrange the data to obtain a uniform distribution using a technique similar to 

the constrained centroidal Voronoi tessellation mesh generator (Nguyen et al., 2009) 

and to the unispiring physical algorithm (Lallemand and Schwarz, 2011). In both 

methods, a convergent iterative algorithm implements the data redistribution process. 

In the first case every entry is iteratively repositioned to the center of mass of the 
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Voronoi tessellation region. In the second case the data is moved according to a 

repulsive force based on the length of the Delaunay triangulation edges. The 

Delaunay triangulation and the Voronoi tessellation provide rigid structures that are 

iteratively deformed but not modified, thus both methods guarantee a coherent 

transformation in preserving the neighborhood of the original space. Both methods 

assume that the data is bounded in an arbitrary convex hull, which is a 𝑀 dimensional 

hypercube in our case. Data points moved outside the boundary are orthogonally 

projected on the boundary before the next iteration. This in turn may harm the 

preservation of the original neighborhood, particularly when the rank-transformed 

data results in clusters near the boundaries. In order to avoid this shortcoming, we 

adopt these two simple stratagems: 

• at initialization scale the data so that there is a tolerance margin between the 

data edges and the bounding hull; 

• at every iteration shrink the data towards the hull center if a relevant 

percentage of entries are moved outside the boundaries. 

 

We set the boundary to the 𝑀 dimensional hypercube with unitary side, and the rank 

transformed data is scaled reducing the absolute maximum and minimum to 0.9 and 

0.1 respectively. The algorithm ends when the sum of the iteration total data 

movement or the data covariance measure 𝜆 is below a certain threshold. The latter, 

introduced in (Nguyen et al., 2009) and defined by Equations 5.4-5, tends to 0 for 

uniformly distributed data. We evaluate the performances of the uniform 

redistribution algorithm by measuring 𝜆 and the percentage of entries 𝐝!!!∗  that do 

not present the same neighbors as 𝐝!∗, using the same method we adopted for the 

SOM topology distortion detection. 

 

 𝜆 = 𝐵
𝛾!!!

!!!

𝛾!!
!!!

! − 1
!

 (5.4) 

 

 𝛾! = min
!!!,…,!,!!!

𝐝!∗ − 𝐝!∗  (5.5) 

 

In Figure 5.4 we show examples of 2D and 3D reduced sonic spaces 𝐃∗ redistributed 

to uniformly distributed square and cube through the intermediate rank-transform 

step. In the plots on the right in Figure 5.4, it is evident that the rearrangement 
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algorithm generates a distribution almost perfectly uniform. For these two cases in 

Figure 5.5 we show some intermediate snapshot during the redistribution algorithm. 

 

 
Figure 5.4: Sonic spaces (left) redistributed to uniform square and cube (right) through the 

intermediate rank-transform step (center), for 2D (top) and 3D (bottom) examples. 

 

 
Figure 5.5: Reading from left to right, top to bottom, these figures show the intermediate 

snapshots of the uniform redistribution algorithm for sonic spaces in 2D (top two rows) and 

3D (bottom two rows). 
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5.1.3 Mapping function modeling with ANN 

After the redistribution of the reduced sonic space 𝐃∗ to the uniform 𝐃𝑼∗ , the mapping 

function 𝑚() can be redefined as in 5.6. 

 

 𝐃∗ = 𝑚 𝐃𝑼∗ ≈ 𝑁𝑁 𝐃𝑼∗ + 𝐄 (5.6) 

 

We use a neural network to learn the nonlinear transformation determined by the 

sequence of rank transformation plus uniform redistribution, so that 𝑚() is 

approximated by the ANN input-output learned function 𝑁𝑁() except for an error 

component 𝐄, that we aim to minimize. In particular we use a feed forward network 

with sigmoid activation functions in the hidden layers, while the neurons in the output 

layer present linear activation functions. The network is trained with the Levenberg-

Marquardt back propagation algorithm (Levenberg, 1944; Marquardt, 1963), using 

𝐃𝑼∗  and 𝐃∗ for the input and output pairs respectively, thus the network presents an 

equal number of input and output neurons. If the training accuracy target, measured 

with the Mean-Squared Error (MSE), is not met within a time and maximum number 

of epoch limits, we gradually grow the network and repeat the training. We start with 

a single hidden layer with 𝑀 + 1 neurons, and we grow by one unit at a time. After a 

limit of 𝑀 + 15 we start adding neurons to the second hidden layer and reset the first 

hidden layer to 𝑀 + 1 neurons. The minimum MSE that the ANN can reach is case 

dependent, so for certain 𝐃∗ the goal value cannot be achieved. Therefore after a 

user-defined maximum number of training instances, we select the ANN 

configuration with the minimum MSE, as in Equation 5.7. The MSE measures the 

square root of the average distance from the original position that the 𝑁𝑁() 

determines projecting all entries from 𝐃𝑼∗  to 𝐃∗. Moreover, as an additional 

measurement of the 𝑁𝑁() training quality, we generate a test set of random 

coordinates, uniformly distributed, which emulates all possible combination of a 𝑀 

dimensional MIDI controller. These are fed to the mapping function and we measure 

the percentage of 𝐃∗ loss entries, which are those never being the nearest neighbor of 

any projected coordinate in the test set. 

 

 𝑀𝑆𝐸 =
𝐝!∗ − 𝑁𝑁(𝐝!!!∗ )

!!
!!!

𝐵
 (5.7) 

 



 

 142 

In Figure 5.6 we show three spaces 𝐃∗ next to the their related 𝑁𝑁 𝐃𝑼∗ , which show 

similar overall structure and shape, while minor local differences still exist. When the 

MSE and the percentage of loss entries are too high, it is possible to cope with the 

poor mapping performances by bypassing the mapping function 𝑚() and 

implementing the DMI parameter retrieval 𝐢 directly in the uniform sonic space 𝐃𝑼∗ . 

As mentioned before, in this way IDW interpolation distance weights, used to 

improve poor the DMI analysis parameter resolution, would be less accurate because 

they are measured in 𝐃𝑼∗  rather than in 𝐃∗. The gradual growth of the ANN, the 

training accuracy measurement, and the automatic configuration we presented here, 

frees the user from the definition of the network characteristics, which if 

inappropriate can lead to under-fitting and over-fitting issues. Moreover these provide 

a metric to evaluate, prior to use, the computed mapping function goodness. 

 

 
Figure 5.6: Examples of sonic space (left) versus trained ANN sonic space projection of the 

uniformly redistributed space (right). 
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5.2 Search space and discontinuity-free parameter 

retrieval  

The mapping function, implemented by the ANN, converts the GC output 𝐠𝐜𝐨𝐮𝐭 into 

coordinates of the reduced sonic space 𝐃∗ that we use to determine the closest sonic 

descriptor 𝐝!∗, and to retrieve the associated DMI parameters vector 𝐢!, as in 5.8. The 

non-bijective parameter-to-sound relationship may result in discontinuities of the 𝐢 

stream, or parameter values generating wrong sounds in relation to specific sonic 

space positions when IDW interpolation is applied to the output, as in Equation 4.19. 

 

 𝐢𝒋      ∶     argmin
!

𝐝!∗ −𝑚 𝐠𝐜𝐨𝐮𝐭  (5.8) 

 

In a sound driven synthesis system Puckette (2004) addresses this intrinsic 

shortcoming of DMI control strategies implemented in the sound domain, limiting the 

instantaneous transitions n the sound space only to those entries that ensure 

parameters continuity. Thus at every iteration we can determine a restricted search 

space 𝐃!"#∗  in 𝐃∗ including those 𝐝!∗ with related parameters set 𝐢! minimizing the 

Euclidean distance with the current 𝐢𝒐𝒖𝒕, as described by Equation 5.9. The 

cardinality of 𝐃!"#∗  depends on the number of parameters in 𝐈. 

 

 𝐃!"#∗ ∋   𝐝!∗ → 𝐢!      ∶     argmin
!,!!!"#

𝐢! − 𝐢𝒐𝒖𝒕  (5.9) 

5.2.1 Parameters continuity and usability tradeoff 

The method proposed by Puckette ensures perfect parameters continuity but at the 

same time it can introduce a usability drawback. The limited search subspace in 𝐃∗ is 

determined by neighborhood relationships in 𝐈 so that each element in the restricted 

search space 𝐃!"#∗  can be potentially located anywhere in the sonic space. These can 

be clustered in small nearby areas, dislocated far apart, or organized on a straight line. 

Therefore specific entries or sub-regions of the sonic space may not be reachable, or 

determine a trapping state difficult to breakout of. The first issue can be admissible 

because other and near entries in 𝐃∗ are likely to be reachable and generate similar 

sounds, while the second is detrimental for the interface usability. This approach 

implicitly limits the possible transitions in 𝐃∗ linking every 𝐝!∗ to only a few other 

sonic space entries, unknown to the user. Moreover there is no guarantee pertaining 
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to the omni-directionality of the output transitions for each entry 𝐝!∗, which in turn 

determines possible unresponsive states of the interface. In Figure 5.7 we show 

examples of a sonic space in which the red point represents the closer 𝐝!∗ and the 

green circles represent 𝐃!"#∗ . It is evident that green entries far from the red one are 

unlikely to be the next nearest 𝐝!∗, because these would require an exact instantaneous 

GC output transition with large step variation. Moreover from the bottom 

representation of uniform redistributed sonic space it is clear that the interface will be 

unresponsive if the GC output moves towards a region in which there are no green 

entries. 

 

 
Figure 5.7: Sonic spaces with the green entries representing the nearest neighbor of the red 

entry in the DMI parameter space visualized over two examples (left and right) of original 

space (top) and redistributed space (bottom). 

 

In order to address this drawback, besides providing to the performer the real-

time visualization of the spaces, as in Figure 5.7, we allow minor discontinuities in 

the DMI parameters stream while including more elements in the restricted sonic 

search space 𝐃!"#∗ . Thus we extend the search to those entries 𝐝!∗ whose related 

parameters set in 𝐈 are within a user-defined radial distance 𝑖!"# from the current 𝐢𝒐𝒖𝒕, 

as in 5.10.  
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 𝐃!"#∗ ∋   𝐝!∗ → 𝐢!      ∶      𝐢! − 𝐢𝒐𝒖𝒕 < 𝑖!"# (5.10) 

 

This approach provides a tradeoff between continuity and usability of the system, and 

the number of entries in the restricted sonic search space 𝐃!"#∗  grows rapidly with 

decimal increase of 𝑖!"# (the parameters in 𝐈 are normalized in [0,1]), thus the 

potential discontinuities in the 𝐢𝒐𝒖𝒕 stream are still limited. This still depends on the 

cardinality of the space and the DMI parameter resolution used in the analytical stage. 

In Figure 5.8 we show from left to right the different 𝐃!"#∗  for 𝑖!"# equal to 0.15, 

0.25, and 0.35 respectively. In the example of Figure 5.9 we show the restricted 

search space 𝐃!"#∗  over the related uniform redistributed sonic space as well, for 

values of 𝑖!"# equal to 0.25, and 0.35. Both examples demonstrate how the value of 

𝑖!"# determines the responsiveness or sensitivity of the interface, which can be tuned 

according to the performer preferences and specific sonic space characteristics. 

Finally we propose an additional solution in which the 𝑖!"# is dynamically 

determined from the instantaneous variation of the voice reduced vector 𝐯∗, measured 

by the Euclidean distance from the value at the previous iteration, and multiplied by a 

user-definable coefficient. With this strategy, vocal-postures determine 𝐃!"#∗  

including only the currently closest entry 𝐝!∗, while the size of 𝐃!"#∗  grows linearly 

with the rate of the timbre variation in vocal-gestures. 

 

 
Figure 5.8: Restricted sonic search space, in green, for increasing values of the maximum 

radial distance. 
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Figure 5.9: Restricted sonic space, in green with blue borders, for different maximum radial 

distance over original space (top) and uniformly redistributed space (bottom). The blue 

regions are determined by high density of restricted sonic space entries. 

5.2.2 Parameters kernel function 

When parameter-to-sound mapping is highly non-bijective and there are multiple 

clusters of identical sound generated by heterogeneous combinations of parameters, 

effective browsing of the sound space 𝐃∗ may still be an issue with the strategy 

proposed above because of possible scattered restricted sonic space 𝐃!"#∗ , unless we 

set a large 𝑖!"# and allow potential parameter discontinuities. As an alternative in this 

case we include information derived from the DMI parameters in the descriptor 

vector 𝐝 before NLDR stage. Although not related to any perceptual aspect of the 

sound timbre, this is the only possible approach to spatially separate identical sounds 

generated with different 𝐢. In order to minimize the impact on the perceptual 

representation of 𝐃∗, we include in the descriptor vector 𝐝! a single scalar derived 

from the parameter combination 𝐢!, similar to the kernel methods in ML, used to 

increase the dimensionality of poorly discriminative features (Shawe-Taylor and 

Cristianini, 2004). We chose the non-linear kernel function in 5.11, to extend the 

descriptor vector in 5.12, because it provides clearly distinct values for distant 
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combinations across the whole parameter space. This is visible in Figure 5.10, in 

which the surface represents the output of the kernel function for two parameters, 

always in the normalized range [0,1]. In Figure 5.11 we show the differences in the 

sonic space determined by including parameters related scalar in 𝐝!, which 

contributes to separate and spread the dense clusters, more likely affected by the non-

bijective parameters-to-sound issue. In Equation 5.10 low index 𝑛 parameters have a 

slightly bigger impact on the kernel function value 𝐾 𝐢! . Thus we sort the parameter 

index by their maximum correlation with any descriptor in the sonic space 𝐃. This 

allows for the parameter least correlated with the output sound, and likely less 

discriminative, to contribute the most to the 𝐾 𝐢!  and vice versa. 

 

 𝐾 𝐢 = 𝑖!
!!! +

1
𝑛 + 1

(!!!)
!

!!!

 (5.11) 

 

 𝐝! =    𝑓!"#$ 𝑓!"#$ 𝑑 𝐢! , 1 ,… , 𝑓!"#$(𝑑 𝐢! ,𝑇 ) ;𝐾 𝐢!  (5.12) 

 

 

 
Figure 5.10: Surface representing the scalar generated by the kernel function for two DMI 

parameters full range variation. 
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Figure 5.11: Comparison between low dimensional sonic spaces without (left) and with (right) 

DMI parameter kernel scalar in the high dimensional descriptor vector. The better 

discriminability can be seen in the sonic space that included the kernel scalar. 

5.2.3 Operational modes 

Below we summarize the steps implemented in the VCI4DMI to derive the 

instrument control parameters 𝐢𝐨𝐮𝐭 during runtime from the gestural controller 𝐠𝐜𝐨𝐮𝐭, 

including the different mapping and parameters retrieval options described in this 

chapter, which are implemented and available in the prototype. The outer level list 

entries represent the sequential steps while the inner level list includes the alternative 

options for each step. 

1. Set the restricted search space 𝐃!"#∗  equal to: 

a. 𝐃∗ to consider the whole space and accept potential discontinuities; 

b. the related nearest neighbor in 𝐈 to the previous 𝐢𝐨𝐮𝐭, as in 5.9; 

c. the related entries in 𝐈 within 𝑖!"# from the previous 𝐢𝐨𝐮𝐭, as in 5.10: 

i. 𝑖!"# has a fixed value; 

ii. 𝑖!"# is dynamic and linked to the instantaneous 𝐯∗ variation; 

2. derive the mapping coordinates from 𝐠𝐜𝐨𝐮𝐭: 

a. using the ANN mapping function 𝑚 𝐠𝐜𝐨𝐮𝐭 ; 

b. use 𝐠𝐜𝐨𝐮𝐭 as mapping coordinates and replace 𝐃∗ with the 𝐃𝑼∗  space 

(in this case also 𝐃!"#∗  is in 𝐃𝑼∗ ); 

c. with linear scale and offset applied to 𝐠𝐜𝐨𝐮𝐭 components (for 

comparison only); 

3. compute the Euclidean distance between the mapping coordinates and the 

entries in 𝐃!"#∗  and set 𝐢𝐨𝐮𝐭 to: 

a. the 𝐢! relative to the 𝐝! nearest to the mapping coordinates, as in 5.8; 

b. the IDW interpolation of the 𝐃!"#∗  entries as in 4.19. 
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To improve the implementation efficiency, step 1 of the following iteration is always 

computed straight after step 3 of the current iteration, exploiting the idle time before 

the next GC output arrival. The computational complexity depends on the number of 

entries 𝐵 in the reduced sonic space 𝐃∗, and from the combination of options in the 

above steps. Option 1.a requires 𝐵 Euclidean distance to be computed in step 3, but 

these are only 2D or 3D. Case 1.b and 1.c requires lower Euclidean distances to be 

computed in step 3, but within step 1 it needs 𝐵 Euclidean distances in 𝐈, a space 

likely higher than 3D, plus 𝐵 comparison operation, thus it requires a higher overall 

computational cost. The restricted search space 𝐃!"#∗  is handled by entries index only, 

thus in step 2 the swap between 𝐃∗ and 𝐃𝑼∗  has no cost. Finally the IDW in 3.b 

requires only a small computational load increase compared to 3.a because both step 

3 alternatives require the computation of the Euclidean distance with the set 𝐃!"#∗ . 

5.3 Evaluation and validation 

For the evaluation and validation of the generative DMI mapping strategy presented 

in this chapter we use the same DMI set presented in Section 4.5 and the respective 

analyzed sonic spaces. In the tables below the instruments are identified with the 

same numeric ID defined in Table 4.1. Here as well the measurements are detailed for 

each DMI, due to the inconsistent numbers and scales that make statistical summary 

meaningless. 

In Figure 5.12 we show the uniformity of sonic spaces, measuring the data 

covariance measure 𝜆 as in Equation 5.4. This is detailed in the first column of Table 

A.2 in Appendix A, and perfect uniform distributions have values of 𝜆 close to 0. We 

observe a sensible 𝜆 increase from 𝐃 to 𝐃∗, which is more evident for the 2D case, 

supporting again that the drastic NLDR contributes to cluster the data, while here we 

aim for evenly spaced entries in 𝐃∗. However the redistributed and reduced sonic 

spaces 𝐃𝑼∗ , show 𝜆 values close to 0, which are similar across the set, and not 

dependent on space cardinality due to the termination condition of the iterative 

redistribution algorithm, identical for every DMI. The second column of Table A.2 

shows a percentage of redistribution errors clearly below 1%, supporting the 

reliability of the method. Errors were measured verifying the neighborhood 

relationship between original and transformed spaces with the same technique used 

for the detection of SOM topology distortions. As expected the few errors that do 

occur are usually near the vertices of the uniform redistributed space. 
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Figure 5.12: Uniformity of different sonic spaces estimated measuring the data covariance λ. 

The rising trend of the first half shows how the dimensionality reduction worsens the original 

uniformity, the falling trend in the second half shows that the redistribution algorithm 

generates almost perfectly uniform distributed sonic spaces. Each colored line represents a 

different DMI case. 

 

In the third column of Table A.2 we show the ANN configuration that minimized 

the MSE of the regression 𝐃𝑼∗  to 𝐃∗. The network configuration and minimum MSE 

are case dependent, but in general two layers of hidden neurons provide better 

performances. Additional hidden layers provided little or no gain hence not justifying 

the increase in the computational load that this would require in the runtime 

VCI4DMI mapping. The complexity of the transformation that the ANN tries to 

estimate is essentially related to the non-uniformity of 𝐃∗. In general, when the 

uniformity measure 𝜆 of the reduced sonic space is bigger than 0.5 the MSE is 

significant but we verified that the overall system is still usable. When 𝜆 is above 1 

the ANN fails in learning the inverse redistribution, but the VCI4DMI can still be 

used skipping the ANN mapping function 𝑚() and projecting the GC output directly 

onto 𝐃𝑼∗ , and accepting lower the IDW precision. In the remaining results we detail in 

this section, the few cases showing low mapping performances are usually associated 

with highly clustered original sonic spaces, denoted by large value of 𝜆. 

In Figure 5.13 and in the fourth and fifth columns of Table A.2 we display the 

percentage of obtainable 𝐝!∗, thus parameter combinations 𝐢!, projecting the entries in 

𝐃𝑼∗  back to 𝐃∗ with the ANN mapping function 𝑚() and finding the nearest entry in 

the reduced sonic space. In general the percentage is particularly low, especially for 

2D cases, but this measure is mostly associable with the absolute precision of the 

trained ANN. We repeat the same measurement with settings similar to a real use-

case, using coordinates derived from a grid with resolution 1/128 on each unitary 

range component. We projected these with 𝑚() onto 𝐃∗ and searched for the nearest 
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𝐝!∗. The results, in the sixth column, show that in general we lose less than 10% of the 

total space spanned by the parameter combinations. Finally we measured the linearity 

of the sonic response, approximated by the average line fitting residual for all reduced 

principal descriptors, which are the coordinates of the 𝐝!∗, obtained feeding the 

mapping function 𝑚() with the coordinates of the diagonals of the intermediate GC 

space. The residuals are generally low, except for high 𝜆 cases, and this suggests 

good linearity between GC space and sonic response of the proposed mapping 

method. 

 

 
Figure 5.13: Percentage of unique DMI parameter combination obtainable with ANN 

projection of Du
* onto D* and with the ANN used for sonic space control, clearly above 80% 

in most case (left), average line fitting residual for all reduced principal descriptors, lower 

than 0.2 in most cases, implying linearity between control and sonic response (right). Each 

colored line represents a different DMI case and results are shown for 2D and 3D cases. 

 

In Figure 5.14 we illustrate percentage of obtained parameters, parameter 

continuity and sonic space coverage spread for approximately 2 minutes of mapping 

from data coming from a GC emulator with a rate of 100 𝐠𝐜𝐨𝐮𝐭 per second. The 

results are detailed in Tables A.3-4 in appendix A. In particular we replicated typical 

output trajectories of the vocal GC, evenly covering the intermediate mapping space, 

and this is fed to the DMI mapping block. The percentage of obtained parameters is 

evaluated as above. For parameter continuity we consider the average distance 

between consecutive parameters set 𝐢𝒐𝒖𝒕, and the spread is measured counting the 

standard deviation of the nearest neighbor count of each 𝐝!∗. The study demonstrates 

that limiting the search space to 𝐃!"#∗  minimizes the discontinuities in the parameters 

generation, but it also shows that there is a tradeoff between continuity and usability, 

estimated with coverage percentage and spread deviation. Therefore we repeat this 

test for different values of 𝑖!"# to demonstrate the effect of different cardinality of 

𝐃!"#∗  on the three measurements. Further, this has been repeated for the 2D and 3D 
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sonic mappings using the ANN-based mapping function 𝑚() for the results in the left 

plots of Figures 5.14-16 and in Table A.3, while in the right plot of Figure 5.14-16 

and in Table A.4 the GC output projection and the search are directly onto 𝐃𝑼∗ . 

Moreover in both cases we did not use the IDW at the output, which often eases the 

eventual DMI parameter output discontinuity. The individual DMIs analysis settings, 

especially those related to the parameter resolutions, result in drastically different 

number entries in 𝐃 and in the restricted search space 𝐃!"#∗  for the same value of 𝑖!"#. 

From the results we observe that increasing 𝑖!"# the space coverage grows and 

the spread decreases, resulting in a sonic space mapping easier to navigate. Moreover, 

increases in the coverage are more evident and in cases presenting low percentage for 

small 𝑖!"# it is evident how the system gets trapped in few states or entries of 𝐃∗. The 

coverage can eventually decrease slightly due to the random component in the test 

input data generation. The parameter continuity is usually good as the average 

distance of consecutive parameter vectors is small and lower than 𝑖!"#, which 

represents the upper bound. The average distance grows with 𝑖!"# due to the non-

bijective parameter-to-sound relationship, or to a rapid gesture variation. Comparing 

the left and right plots of Figures 5.14-16 and in Tables A.3-4 we conclude that the 

second simplified mapping method often results in improved usability due to higher 

coverage with lower spread, but this comes at the expense of the IDW precision, 

which is more critical when the cardinality of 𝐃∗ is low. The results demonstrate that 

the method we introduced in this chapter can provide a balance between parameter 

reach and discontinuity to address the intrinsic problem of the non-bijective 

parameter-to-sound relationship. Moreover comparing the results of the 2D and 3D 

cases we observe that often the performance increase provided by the additional 

dimension is minimal. Thus the 2D mapping offers an almost equally expressive 

interface requiring less cognitive attention, as discussed later in Chapter 7. 

Finally in Table 5.1 we show the improvement on the results presented in this 

section of adding the DMI parameters kernel scalar   𝐾 𝐢!  of Equation 5.11 in 𝐃. The 

table only includes a subset of DMI evaluation cases, limited to the 2D reductions, 

where the improvements are usually more critical. The effects on the data covariance 

measure 𝜆 are conflicting, but on average, adding the kernel scalar determines a 𝐃𝑼∗  

to 𝐃∗ transformation that is better modeled by the ANN. We obtain a lower MSE 

that, as explained before, reflects higher performances in all further measurements. 

However with this stratagem we allow in the space 𝐃 one non-sonic descriptor, which 

is not in total accordance with the interface principles. Hence the kernel should be 

included only if the usability is excessively poor and limited. 
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Figure 5.14: Percentage of obtained parameters for 2 minutes of simulated use, with different 

values of irad and different mapping dimensionality using the ANN-based mapping function 

(left), and the mapping directly onto the uniformly redistributed space (right). The coverage 

increases with larger irad and it is above 80% in most cases. Each colored line represents a 

different DMI case. 

 

 

 
Figure 5.15: Parameters continuity obtained for 2 minutes of simulated use, with different 

values of irad and different mapping dimensionality using the ANN-based mapping function 

(left), and the mapping directly onto the uniformly redistributed space (right). The results 

represent the average distance between consecutive parameters vector, and these show that 

continuity worsens with larger irad, but values are generally small and lower than the upper 

bound irad. Each colored line represents a different DMI case. 
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Figure 5.16: Space coverage spread of obtained parameters for 2 minutes of simulated use, 

with different values of irad, different mapping dimensionality using the ANN-based mapping 

function (left) and the mapping directly onto the uniformly redistributed space (right). The 

spread values are generally low indicating a sonic space mapping easy to navigate and in 

general these decrease with larger irad when using the ANN-based mapping function. Each 

colored line represents a different DMI case. 

 

 

D D* Du*$ cfg MSE
7 0.833 0.955 0.055 0.019 19)6 0.94 55.2 93.8 0.055
7k 0.831 1.104 0.048 0.015 14)7 0.19 60.8 93.3 0.088
8 0.652 1.204 0.058 0.064 9)6 11.2 38.8 80.7 0.181
8k 0.592 1.222 0.046 0.044 12)6 2.17 49.2 89.0 0.234
10 0.709 1.160 0.055 0.045 17)4 4.29 20.5 47.9 0.193
10k 0.480 0.910 0.050 0.011 15)4 0.63 60.8 93.7 0.205
11 0.553 1.159 0.060 0.100 15)6 25 23.9 65.6 0.391
11k 0.451 1.158 0.050 0.055 14)7 4.86 44.6 82.0 0.463
14 0.316 0.653 0.053 0.008 19)7 48.7 53.3 89.9 0.515
14k 0.404 0.808 0.049 0.007 18)6 0.06 63.5 94.9 0.066
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Table 5.1: Result improvements for a subset of DMI case and limited to the 2D reduction 

when including the parameters kernel scalar in the high dimensional sonic space before the 

mapping computation. 
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5.4 Summary 

The procedure to derive the sonic space mapping function and the techniques to 

retrieve DMI parameters complete the training and functional components of 

VCI4DMI. In accordance with the principles and requirements expressed in Section 

2.3.1, in this chapter we presented a strategy to provide reduced and adapted control 

over the sonic spaces of specific instruments with linear responses between 

controllers and perceptual sound. We motivated and illustrated the redistribution of 

the space into a uniformly distributed hypercube that we use as intermediate and 

standard mapping layer between the voice and instrument domains. An ANN models 

the sonic space redistribution process and implements the coordinate conversion from 

the GC output to the lower dimensional sonic space for each specific instrument. We 

presented a tradeoff for the DMI parameter retrieval where there is a balance between 

discontinuity-free parameters and the explorability of the sonic space, including a 

functional option to dynamically link the maximum allowed parameters step to the 

voice input. Finally we proposed a strategy based on a kernel function for the DMI 

parameters to ease the non-bijective shortcoming of the parameters-to-sound 

relationship. The DMI mapping realized in this way provides automatic adaptation 

and posterior co-design between instrument and controller. Moreover the 

intermediate mapping layer vocal-gesture and sonic spaces are iso-dimensional and 

isomorphic and are perfectly overlapped, maximizing the breadth of explorable sonic 

space given a set of vocal-gestures and target DMI parameters. With a certain 

tolerance continuous trajectories in the vocal space determine continuous trajectories 

not only in the sonic space but also in the parameter space. The analysis and training 

procedures are unsupervised so that user intervention is not required. The system is 

modular and thus different voice and DMI components can be independently joined 

in the VCI4DMI, promoting high reusability of analysis and training procedure 

outcomes. In Figure 5.12 we illustrate the summary of the training procedure and 

functional part of the DMI mapping for the VCI4DMI presented in this chapter. 
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Figure 5.17: Illustrated summary of training procedure and functional part of the DMI 

mapping through sonic space components for the VCI4DMI.  
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Chapter 6  
 

Functional Prototype 
 

 

This chapter is dedicated to the proof-of-concept prototype of the VCI4DMI that we 

developed in the framework of this thesis. The open-source prototype integrates the 

adaptive and generative mapping methods described in the previous chapters, and it 

provides a platform for further exploration of the novel instrument mapping 

techniques and for the users evaluation of the proposed interface. We start the chapter 

introducing the VCI4DMI prototype structure and software implementation for 

training and runtime components, which has been optimized and refined for reliable 

use in live performances. Then we present the user perspective on the setup workflow 

and the available options to meet specific performers’ preferences. Then follows the 

discussion regarding the audience point of view on the vocal interface. The chapter 

ends with the description of a solo musical performance exclusively based on the 

VCI4DMI, for which we developed a specific prototype version and a custom 

hardware controller. 

6.1 Prototype Implementation 

The open-source3 LGPLv34 functional prototype is implemented in a set of 

Max/MSP5 patches, Max for Live6 devices, and MATLAB7 functions, which 

cooperates concurrently to implement the online instrument analysis, the offline 

trainings for the vocal GC and the DMI mapping components, and the runtime 

integrated interface. The prototype partitioning is visible in Figure 6.1, where we 

illustrate the overall functional diagram of the entire VCI4DMI system, and we 

indicate the implementation language and partition entity on the top right of each 

functional block. 

                                                        
3 http://stefanofasciani.com/vci4dmi.html 
4 https://www.gnu.org/licenses/lgpl.html 
5 http://cycling74.com/products/max/ 
6 https://www.ableton.com/en/live/max-for-live/ 
7 http://www.mathworks.com/products/matlab/ 
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Figure 6.1: VCI4DMI overall functional diagram with implementation language and entity on the top right of each block. 
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6.1.1 DMI front-end and back-end 

To provide the VCI4DMI with unrestricted DMI interfacing capability for analysis 

and real-time control purposes we developed front-end and back-end devices that 

wrap any instrument and expose a fixed communication protocol to the VCI4DMI 

system. The front-end is the bridge for the DMI parameters and it is necessary for 

analysis and runtime control phases. The back-end routes the DMI sound signal to the 

analysis system and can be removed during the real-time vocal control. The front-end 

and back-end components are integrated in a DAW, which supports and eases the 

interfacing of the VCI4DMI to any software plugin and hardware DMI, including any 

arbitrary chain of these. Front-end and back-end are developed as devices for Ableton 

Live8, which is one of the most popular state-of-the-art DAWs. The implementation 

is based on in Max for Live that permits control with an identical protocol any 

parameters of DMIs hosted in Live. The VCI4DMI prototype core communicates 

with DMIs via the Open Sound Control (OSC) protocol, which is not yet supported in 

most consumer hardware or software instruments, so the front-end also provides an 

ad-hoc conversion stage. 

We developed two front-end devices, one for sound generators and the other for 

sound processors. Both target a specific device hosted in Live and drive up to 8 DMI 

parameters. These are received via OSC and set instantaneously on the DMI if 

coming from the online analysis system, while they are linearly interpolated every 

5ms (can be increased up to 1ms) between two consecutive control vectors 𝐢𝐨𝐮𝐭. The 

interpolation ramp time is equal to the system 𝐢𝐨𝐮𝐭 output rate, which in turn depends 

on the voice analysis step size. The sound generator front-end also provides a bridge 

to the online analysis system to trigger the device, converting signals from OSC into 

MIDI note-on and note-off, including specific pitch and velocity. The sound 

processor front-end also generates the input signal for the instrument analysis and it is 

compliant with the analysis modes, selecting between Dirac impulse, white, pink, or 

brown noise. Both front-end devices are transparent to the Live incoming MIDI and 

audio signals, allowing runtime device control without blocking the DAW track 

dataflow. 

The back-end device, only needed for the analysis stage, forwards the DMI 

stereo output to the analysis system through a TCP network stream, which transmits 

PCM uncompressed audio with low-latency. Both front-end and back-end exchange 
                                                        
8 https://www.ableton.com 
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data outside Live only though network based protocols, and therefore the analysis and 

the runtime control system can be hosted on the same machine, using the virtual local 

loopback, or on separated remote machines. Moreover, thanks to the audio and MIDI 

routing features of Live, it is possible to interface the VCI4DMI also to external 

hardware DMIs. For this purpose we developed an additional Max for Live bridge 

device that routes and maps the front-end parameters to a MIDI hardware port as 

control change messages. For the analysis stage the back-end is fed with the input 

stereo channel connected to the DMI audio output. In Figures 6.2-3 we show 

screenshots of the sound generator front-end and sound processor front-end, targeting 

respectively a VST external plugin and a Live native device, both followed by the 

DMI back-end. 

 

 
Figure 6.2: Max for Live sound generator front-end and back-end, respectively on the left and 

on the right side of a VST plugin DMI hosted in Live. Front-end and back-end devices wrap 

the DMI enabling control and data exchange with the VCI4DMI core system for analysis and 

runtime control purposes. 

 

 
Figure 6.3: Max for Live sound processor front-end and back-end, respectively on the left and 

on the right side of a native Live audio effect. Front-end and back-end devices wrap the DMI 

enabling control and data exchange with the VCI4DMI core system for analysis and runtime 

control purposes. 

6.1.2 Online DMI analysis 

The online analytical stage is implemented in a Max/MSP patch, in accordance with 

the instrument analysis modes in Chapter 4. It communicates with the front-ends via 

OSC and receives the DMI audio output from the back-end via TCP streaming. The 
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patch GUI, shown in Figure 6.4, allows enabling up to eight DMI parameters and 

defines the respective ranges and resolutions. The system provides four analysis 

modes: two for generators and two for processors. The branching between steady and 

variable timbres occurs in the following offline analysis stage, bringing to six the 

total mode count as in the taxonomy of Chapter 4. The users can modify the default 

analytical settings that include window size, window step, analysis timing, IR 

maximum duration, number of analysis windows per state, analysis pitch and 

velocity. Feedback provided prior to the analysis process shows the resulting number 

of parameters unique combination, the estimation of total analysis time, and 

detectable period range for variable timbre analysis. The timbre descriptors are 

computed online and includes the loudness of the Bark critical bands, energy, 

brightness or spectral centroid, noisiness, spectral deviation, spectral skewness, and 

these can be individually disabled from the related plot bar, which in turn gets 

darkened. The Bark critical bands can be replaced with the MFCC, and the number of 

bands can be expanded or reduced in both cases. Alternatively the system allows the 

use of external timbre analytical tools by generating a corpus of wave files, equal in 

length, containing the DMI audio outputs associated with the unique combinations in 

𝐈. For sound processors analyzed in the time domain using the Dirac impulse as input 

signal, descriptors are not computed online, while we the store the entire IR sampled 

at audio rate for each parameter combination. These are analyzed only later in the 

offline stage, because we require a pre-processing step in which all IR recordings are 

aligned to the input Dirac impulse with single sample precision. The system supports 

a test mode in which the descriptors are computed and visualized but not stored, 

while the DMI parameters faders in the GUI become interactive. The analytical 

settings are stored into recallable presets. Once the analysis system is configured, the 

process runs automatically and without supervision. The matrix of parameters unique 

combinations 𝐈 is generated as soon as the analysis starts, while descriptor vectors are 

accumulated progressively in 𝐃. Finally 𝐈 and 𝐃 are exported to files for the 

following offline analysis and DMI mapping training. 

Since dynamic programming is not provided in Max/MSP and Max for Live we 

set a maximum number of DMI parameters that the front-end and analysis patch can 

support. The current limit of eight parameters has been sufficient for any DMI 

analysis that we used in real performance and user evaluation scenarios. However this 

limit can be extended by replicating internal modules of the patches, while the rest of 

the system can support any number of DMI parameters. 
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Figure 6.4: DMI online analysis GUI Max/MSP patch for selecting DMI parameters ranges and step resolutions, for selecting the analysis mode and options, and for 

visualizing the timbre descriptors. 
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6.1.2.1 DMI analysis synchronization 

The DMI online analysis involves four different devices that exchange a considerable 

amount of data with different protocols over diverse channels, which include general-

purpose computer networks that present variable latency. The synchronization of the 

analysis procedure is central to ensure that each 𝐝 only contains descriptors computed 

at the right time over the DMI output generated by the right 𝐢. Therefore we 

implement the set of synchronization messages, propagated across the devices, 

ensuring that in the analysis sequential flow an operation is executed only if its 

upstream dependencies have been completed. This is illustrated in Figure 6.4 where 

the solid and dotted lines represent data and sync messages respectively. The 

Max/MSP DMI online analysis patch sends 𝐢 via OSC to the front-end, which updates 

the DMI and waits for a Max for Live internal update acknowledgement. This is then 

propagated to the back-end within the Max for Live environment, and forwarded to 

the Max/MSP DMI online analysis patch through a positive impulse over an 

additional and dedicated audio channel, streamed synchronously with the two used 

for the DMI stereo output. When Max/MSP receives the update acknowledgment 

message, the timbre descriptor computation starts, and when completed a new 𝐢 is 

sent to the front-end and the sequence restarts. Additional waiting intervals inserted 

after the parameters update acknowledge message or after the analysis completion 

message can be defined to handle the analysis exclusion of attack, decay, and release 

phases. For analysis modes that require an additional event trigger for every 𝐢 such as 

the impulse generation for the processors time analysis mode, and note-on/off for 

decaying timbre generators, the synchronization system presents an additional 

internal loop, visible in Figure 6.4. The DMI online analysis patch triggers the event 

only after receiving the parameters update message, and in turn the 𝐝 analysis waits 

for the trigger acknowledgement as well, propagated back with a negative impulse on 

the additional TCP streaming channel. 
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Figure 6.5: Illustration of the DMI online analysis synchronization strategy where solid lines 

and dotted lines represent data and sync messages respectively. This strategy allows the 

various components to stay synchronized even when running on different machines. 

6.1.3 Offline DMI analysis and mapping training  

The timbre descriptor matrix 𝐃 computed during the analysis stage with the patch 

described in the previous section contains multiple descriptor vectors 𝐝! for each 

unique parameter combination 𝐢!. The mode dependent 𝐃 postprocessing and the 

mapping 𝑚() ANN training, described in Chapters 4 and 5, are implemented in a 

MATLAB offline function which does not require further data exchange or 

synchronization with the DMI. We provide one version for the time domain sound 

processors and another for other modes. The arguments of the functions include the 𝐃 

and 𝐈 files path, DMI parameters kernel flag, and the timbre descriptor matrix 𝐃 

postprocessing analysis mode identifier. Moreover for the time domain version the 

optional reverb IR features computation flag is required, while for the other version 

the input arguments include the number of descriptor vectors 𝐝! per 𝐢!, analysis 

window and step size. These return mapping function, sonic space, DMI parameters 

neighborhood relationship, and runtime DMI mapping pre-computed data into 

structures, which can be directly loaded into the runtime VCI4DMI, supporting the 

operational modes described in 5.2.3. If the intrinsic dimensionality of 𝐃 is higher 

than two, the function computes and includes in the output structure reduction and 

mapping functions for both 2D and 3D cases, which present differences in the 

uniform redistribution process as well as in the ANN based 𝑚(). This supports the 
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interfacing of the DMI with vocal GC with two or three independent output signals. 

During the analysis and mapping computation the MATLAB function provides 

initial, intermediate, and final visualizations of the sonic data and of the ANN output, 

similar to those in Chapters 4 and 5. Moreover the function provides training 

feedback information and measurements such as those in Sections 4.5 and 5.3. 

6.1.4 Offline Voice analysis and GC training 

Two separates offline MATLAB functions implement the blind search for the optimal 

voice low-level features computation settings and the SOG training that returns the 

vocal GC. The first function takes as input the path where the vocal-gesture and 

vocal-posture files are stored, plus the number of posture files. The different instances 

of vocal-gestures are concatenated and included in a single file, while the vocal-

postures are kept in separate files because statistical measurements are computed first 

on the basis of individual postures. For each case across the 368 different settings 

explored in the blind search algorithm, the function outputs information on RMD, 

robust features, intrinsic dimensionality of the vocal-gesture 𝑖𝑑𝑖𝑚(𝐕𝑮), and quality 

rating 𝑄!"! for each feature group and for the overall low-level features set. The 

function outputs and stores in files the computation settings related to the best 𝑄!"! 

case, the relative robust feature mask, the feature group normalization coefficients, 

vocal-gesture features matrix 𝐕𝑮 and the 𝑃 vocal-postures features matrix 𝐕𝒑 

computed with the best settings. Overall 𝑄!"! trends are plotted at the end of the low-

level vocal features optimal computation settings blind search algorithm. 

The vocal GC is computed in a second independent function that implements the 

SOG training procedure. The input arguments include the path containing the blind 

search result files, and optional parameters to manually define the GC dimensionality 

𝑀, the number of cluster in 𝐕𝑮, and SOM lattice training parameters. Moreover we 

provide a separate function for the semi-supervised variant in which the multiclass 

LDA replaces Isomap NLDR. This requires the user to define the number of postures 

to be associated with the 2! vertices. During the SOG training the function provided 

data and output lattice plots, similar to those included in Chapter 3. Moreover the 

intrinsic dimensionality of 𝐕𝑮, percentage of data rejected after pre-filtering, gesture 

extrema detection, SOM configuration, and details on output lattice topology 

distortions are displayed as well. In the rare chance of output lattice with one or more 

topology distortions, the training is repeated. The outcome of the training is saved 

into a data structure compatible with the runtime VCI4DMI, supporting the 
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operational modes discussed in Section 3.3.1.3. The data structure includes the 

settings to compute the low-level voice features, the scaling and normalization 

coefficients, the dimensionality reduction map, the data rotation matrix, the bounding 

convex hull, the output lattice weights, masses, and neighborhood indexes, which are 

necessary to implement the vocal GC. When the blind search is not needed, the SOG 

training input file can be computed online using the runtime Max/MSP patch 

presented in the next section, which supports both live voice and file input. 

6.1.5 Runtime Interface 

The runtime VCI4DMI that maps in real-time a training compliant vocal-gesture onto 

DMI specific target parameters, is based on information embedded in the two data 

structures generated by the respective vocal GC and DMI mapping training functions. 

The runtime VCI4DMI prototype is implemented concurrently by a real-time 

MATLAB function, which includes two parallel jobs, a Max/MSP patch, and the 

Max for Live DMI front-end, which provides the final interfacing layer with the 

instrument. In Figure 6.6 we illustrate the implementation distributed over the three 

different environments. 

 

 
Figure 6.6: Illustration of the implementation distribution of the runtime part of the VCI4DMI 

prototype. 
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The core of the VCI4DMI is implemented in the two MATLAB parallel jobs, while 

the Max/MSP patch provides real-time voice analysis and the GUI to configure and 

tune the interface response. The clear separation of the runtime VCI4DMI into 

independent entities aims to exploit the computational power offered by the modern 

multi-core CPUs. The communication between the blocks, including those between 

the MATLAB internal parallel jobs, are based on protocols compatible with computer 

networks so that the prototype can support task distribution on separate local or 

remote machines, desirable with weak CPUs or in remote network musical 

performances. 

6.1.5.1 Vocal GC and DMI mapping 

The runtime VCI4DMI MATLAB function takes as input arguments the vocal GC 

and DMI mapping memory structure as input. At the beginning the system starts two 

separates parallel jobs, and initializes OSC server on the voice GC side and clients on 

both sides. Then it performs the initialization routine to set up the internal working 

configuration, compliant with the current operational mode, and it sends a sequence 

of OSC messages to the runtime Max/MSP patch to configure the low-level features 

computation settings, update the GUI related to the operational mode and to other 

functional options. These are always stored and updated in the two data structures 

during the interface execution. After initialization the two parallel jobs wait for 

incoming messages. If the OSC message contains operational settings, the voice GC 

is immediately updated and the new configuration updated in the related data 

structure, while if the settings are related to the DMI mapping part, the message is 

propagated to the second parallel job, which updates the system accordingly. When 

the OSC message contains voice data the GC performs the sequence of operations to 

compute the stream gestural controller output sample vectors 𝐠𝐜𝐨𝐮𝐭, which is 

propagated to the second parallel job that performs the DMI specific mapping and 

parameters output 𝐢𝐨𝐮𝐭, are sent to the Max for Live front-end via OSC. The runtime 

endless loop is terminated with a specific OSC message, which determines the 

conclusion of the parallel jobs and returns the voice GC and DMI mapping data 

structures containing updated settings and operational modes, so that the specific 

VCI4DMI can be stored and executed again later. 

The computation from the voice instantaneous low-level features vector 𝐯 to the 

DMI parameters set 𝐢𝐨𝐮𝐭 may appear mostly sequential, but the parallel 

implementation provides an overall speed improvement up of a factor of 1.9x 

compared to the sequential version, almost doubling the 𝐢𝐨𝐮𝐭 rate limit. In the vocal 
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GC and DMI mapping components a consistent amount of computation is related to 

the update of the search spaces, which can be performed independently and in 

parallel. Moreover these are pre-computed for the next iteration as soon as the current 

𝐠𝐜𝐨𝐮𝐭 or 𝐢𝐨𝐮𝐭 messages are sent, in order to exploit efficiently the incoming message 

waiting time. Internal configuration update for the two components, due to OSC 

operational setting messages, are executed in parallel as well. Finally, having the 

OSC server and DMI clients running separately reduces the OSC overhead, since 

send and receive can happen simultaneously. The implementation includes minimal 

synchronization barriers when the two jobs exchange data, and the OSC server 

integrates a message pipe. The system detects and warns when computational 

overload occurs, monitoring the quantity of OSC voice data messages in the pipe. 

Interface visual feedback is optionally provided by sending the 𝐠𝐜𝐨𝐮𝐭 to the 

runtime Max/MSP patch via OSC, which is represented in the 𝑀 dimensional 

intermediate mapping space. Moreover a non-parallel version of runtime function can 

provide a simplified and interactive visualization of the reduced voice vector 𝐯∗ 

projected over the SOG output lattice weights 𝐰!, displaying closer output node 𝑂! 

and the bounding convex hull, plus the DMI sonic space 𝐃∗ with 𝑚(𝐠𝐜𝐨𝐮𝐭), closer 

entry 𝐝!∗, and restricted search space 𝐃!"#∗ , as in the 2D example of Figure 6.7. These 

two visualizations have a severe effect on the computational load, especially for the 

3D case, and are mostly used only in the early stages when the performer is becoming 

familiar with and adjusting the generated mapping. 

 

 
Figure 6.7: Simplified real-time user-feedback visualizations of the SOG lattice (left) and 

sonic space (right) implemented in the runtime non-parallel version of the prototype. 
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6.1.5.2 Voice analysis and runtime interface GUI 

The computation of the low-level features from the live voice input is implemented in 

a Max/MSP patch, which streams vectors of the descriptors to MATLAB via OSC. 

The patch provides a GUI displaying VCI4DMI operational settings and options. 

These can be adjusted at runtime resulting in a modification of the data processing 

flow within the patch itself or in the concurrent MATLAB routine. The Max/MSP 

patch has full control of the MATLAB part, which runs on the in background and is 

transparent to the user. The prototype integrates additional functionalities, described 

in this section, for the effective application in real performances. In Figure 6.8 we 

show the GUI of the Max/MSP patch divided into the 12 sub sections detailed below. 

a. System settings including IP address and ports for OSC client and server, 

low-level features computation configuration, set by the MATLAB runtime 

function or manually imported/exported. The RMD threshold can be defined 

for online robust features analysis. 

b. Audio input and output channel selection, optional input and output from/to 

file, basic audio processing including gain, compressor, two-pole two-zero 

filter with graphical interface, and spectral visualizations of the signal before 

and after the processing. 

c. Low-level features first order IIR low pass filter coefficient to further smooth 

the interface response and improve the stability of the output over vocal-

postures. Coefficient values above 0.95 determine a slower and less 

responsive tracking of the voice timbre variation. 

d. Four operational modes are provided: 

1. Runtime control, in which the computed 𝐯 are sent via OSC to 

MATLAB routines that implement the vocal interface. Options allow 

enabling and disabling MATLAB visual feedback, local 𝐠𝐜𝐨𝐮𝐭 and 

𝐢𝐨𝐮𝐭 feedback, internal recording of 𝐯, 𝐠𝐜𝐨𝐮𝐭 and 𝐢𝐨𝐮𝐭 streams. 

2. Testing mode with voice low-level features computed and only 

visualized on screen, plus optional RMD and robust features online 

calculation and visualization at regular intervals. 

3. Vocal-postures online learning mode, to detect robust features based 

on average RMD measurement over a set of vocal-postures with 

fixed features computation settings. Export 𝐕𝒑 and noisy feature 

mask files for the SOG offline training. 

4. Vocal-gestures online recording mode for generating and exporting 

the 𝐕𝑮 file for the SOG offline training. 
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e. Vocal GC operational mode settings and options for changing and adjusting 

the response of the GC at runtime. The search can be extended to the whole 

output lattice or restricted to the neighbors only, with optional gravitational 

attraction search metric, with user defined gravitational constant. The convex 

hull validity check can be enabled, disabled, and optionally used to 

orthogonally project on the boundary vectors falling outside the hull. Two 

scaling factors are available to expand and contract the convex hull and the 

SOG lattice. The status of the interpolation by IDW can be changed as well 

as the power parameter. The user can change the voice to sonic space 

mapping by inverting the output ranges of the individual 𝐠𝐜𝐨𝐮𝐭. An optional 

adaptive mode is available to modify the GC after every performer’s voice 

interruption. In particular we shift the SOG lattice weights to match the new 

input vocal-posture position 𝐯∗ with the closer lattice vertex. Finally the GC 

can be bypassed to browse the DMI sonic space directly with the low-level 

voice features. 

f. DMI mapping operational mode settings and options change sensitivity and 

response of the instrument dependent interface component. The mapping 

function 𝑚() can be set to the nonlinear ANN, direct linear scaling plus 

offset, or bypassed browsing directly the uniformly redistributed space 𝐃𝑼∗ . 

The restricted search space 𝐃!"#∗  can be set to the entire 𝐃∗, to the first or 

second neighborhood level or within a distance 𝑖!"# from the previous 𝐢𝐨𝐮𝐭 in 

𝐈. The DMI parameters IDW interpolation status can be changed as well as 

the power parameter. Finally the DMI mapping can be bypassed linking 

𝐠𝐜𝐨𝐮𝐭 directly to the instrument parameters. The distance 𝑖!"# as well as the 

IDW interpolation exponent can be dynamically related to the instantaneous 

𝐯∗ variation, to improve the DMI output parameters stability over voice-

postures. 

g. Two timed gates are provided to perform or inhibit the mapping based on the 

live input voice characteristics. The first is based on energy level and 

optionally also on the detection of voiced sound. The second works on the 

low-level voice features flux, which is the instantaneous Euclidean distance 

of two consecutive 𝐯. For both gates the user can set the threshold, monitor 

the real-time value, and set the minimum true condition time interval to open 

the gate. The interface can still react when just background noise at the input 

generates a 𝐯∗ inside the convex hull, thus the gates provide a temporary 

interruption of the interface mapping when voice is not present at the input, 
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or when the voice is invariant. The timed gate is effective with burst noise 

such as background music, and if properly tuned it blocks short transients and 

loud inputs, unlikely to be voice signals, from generating 𝐢𝐨𝐮𝐭. 

h. A default combination of DMI parameters can be optionally forced on the 

DMI, via the MATLAB and DMI front-end chain, when the energy gate is 

closed. The user can specify the time interval that takes to linearly glide from 

the last 𝐢𝐨𝐮𝐭 to the defaults. This functional option grants additional 

dynamism to the interface. 

i. For performance exclusively based on the VCI4DMI we provide a simple 

method to trigger DMI sounds, generating MIDI notes from the voice input 

by tracking energy, pitch, and onset. These voice characteristics are not used 

within the interface, and as discussed in Chapter 3, are controlled 

independently from the supra-glottal or filter component of the voice 

production apparatus. The note pitch, velocity and note duration can be 

manually fixed or derived from the live voice tracking. These are sent via 

MIDI to the instrument and the voice onset detection determines the 

transmission of the note-on message. These settings are stored in the structure 

containing the vocal GC data. 

j. Real-time 𝐠𝐜𝐨𝐮𝐭 and 𝐢𝐨𝐮𝐭 visual feedback normalized to [0,1]. The first is 

mapped into 2D unitary square coordinates, with the third dimension mapped 

to the pointer diameter. The second is mapped onto 8 individual vertical 

faders. 

k. Visualization of low-level scalar and vectorial voice features, with short time 

history, maximum and minimum values. When the RMD measurement is 

enabled, the related value for each coefficient is represented by a horizontal 

yellow segment for every bar, with the lower and higher vertical positions 

representing respectively the zero and the threshold values. The noisy 

features mask can be manually defined from the individual plot bars, which 

in turn gets darkened. 

l. Plot and mask reset, plus settings, divider, mask file import/export. 
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Figure 6.8: Voice analysis and runtime interface GUI Max/MSP patch, each labeled component is described in the text. 
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6.1.6 Libraries, Toolboxes and Externals 

Besides the native functions offered by each implementation platform, the prototype 

depends on the external libraries, toolboxes, and externals listed below. These are 

integrated in their original versions or specifically modified for the VCI4DMI. 

• MATLAB 

o Neural Network Toolbox9 for generation, training and map of feed 

forward ANN. The function that computes the trained network output 

is designed for data batch processing and in the prototype this has 

been properly optimized to meet the hard real-time constraints of the 

interface. 

o Parallel Computing Toolbox10 for the concurrent execution of the 

VCI4DMI runtime components, implemented in separate and 

independent parallel jobs. 

o Dimensionality Reduction Toolbox11 (Van der Maaten and Hinton, 

2008) used for Isomap dimensionality reduction and data projection 

to the low dimensional space, which has been partially optimized for 

real-time mapping of the voice high dimensional data. 

o  Rastamat12 library for MFCC and PLP computation and used as 

reference for the porting of the auditory spectrum and the Bark 

critical bands in Max/MSP. 

o Distmesh13 library (Persson and Strang, 2004) used to redistribute 

arbitrary mesh into specific distribution and shapes, modified to meet 

specific termination conditions of the redistribution algorithm. 

o Kohonen's Self-Organizing Map14 used for standard SOM 

comparison and then modified for the customized implementation of 

the SOG training algorithm. 

o Oscmex15 library for sending and receiving OSC messages in real-

time between MATLAB, Max/MSP and Max for Live. 

                                                        
9 http://www.mathworks.com/products/neural-network/ 
10 http://www.mathworks.com/products/parallel-computing/ 
11 http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html 
12 http://labrosa.ee.columbia.edu/matlab/rastamat/ 
13 http://persson.berkeley.edu/distmesh/ 
14 http://home.wlu.edu/~levys/software/som/ 
15 http://sourceforge.jp/projects/sfnet_oscmex/ 



 

 174 

o Multiclass LDA16 for the multiple class linear discriminant analysis 

used in the semi-supervised SOG variant. 

• Max/MSP 

o Ircam FTM17 (Schnell et al., 2005), Gabor (Schnell and Schwarz, 

2005) and MnM (Bevilacqua, Müller, and Schnell, 2005) shared 

library providing externals for real-time audio analysis, matrix/vector 

data manipulation and visualization. It supports the porting of 

functions between Max/MSP and MATLAB, implemented in a 

similar code flow and providing identical results. 

o Analyzer~18 (Jehan, 2001), a FFT-based perceptual analysis external, 

used for real-time parametric onset detection and loudness tracking. 

o Netsend~19 external for high quality and low-latency uncompressed 

multichannel audio TCP and UDP network streaming. 

o OSC-route20 for OSC messages dispatching. 

 

Other MATLAB third party functions used include inhull21 for verification of data 

position respect with to a multidimensional hull, medoultierfilt22 for parametric 

outlier removal from multidimensional data based on median and quartiles, a 

modified version of T6023 for computing reverberators descriptors from the IR. 

The prototype integrates a collection of externals and abstraction that we 

developed for the VCI4DMI implementation. These are included in the prototype 

repository and implement functionalities that can find use in different applications. 

• FTM Max/MSP Externals: LPC to cepstrum, eigenvalues and eigenvectors, 

formants tracking, Levinson-Durbin recursion, RASTA adaptive filtering, 

RMD, polynomial roots, unique parameter combinations matrix generator. 

• FTM and Max/MSP Abstractions: PLP, RASTA-PLP, MFCC, spectral flux, 

spectral moments, auditory frequency scale conversions, auditory spectrum, 

critical Bark bands, loudness of Bark bands, GC emulator. 
                                                        
16 http://www.mathworks.com/matlabcentral/fileexchange/31760-multiclass-
lda/content/LDA.m 
17 http://ftm.ircam.fr 
18 http://web.media.mit.edu/~tristan/maxmsp.html 
19 http://www.remu.fr/sound-delta/netsend~/ 
20 http://cnmat.berkeley.edu/patch/4029 
21 http://www.mathworks.com/matlabcentral/fileexchange/10226-inhull/content/inhull.m 
22 http://www.mathworks.com/matlabcentral/fileexchange/12958-
medoultierfilt/content/medoutlierfilt.m 
23 http://www.mathworks.com/matlabcentral/fileexchange/1212-t60-m/content/t60.m 
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6.1.7 Computational performance and memory profiling 

The runtime VCI4DMI presents a variable computational load that limits the 

maximum 𝐯 to 𝐢𝐨𝐮𝐭 rate, and is related to the complexity of the voice and instrument 

models used in the system. These in turn depend on the size of vocal training data and 

DMI analysis option provided by the user. The time required to complete the system 

offline training depends on the running platform processing power. The results we 

present in this section are based on a MacBookPro8,2 MD322xx/A equipped with 

2.4GHz quad-core Intel i7, 1.3GHz bus speed, 16GB of dynamic memory, and 

running OSX 10.7.5. The execution times are estimated without using the additional 

GPU co-processing power, and without the concurrent execution on the operating 

system of other CPU demanding applications. 

The blind search for the low-level features computational setting over 368 cases, 

plus 48 mixed order cases, takes in MATLAB about 48 minutes for a data set 

composed of 67 seconds of vocal-gestures and 10 vocal-postures with a total duration 

of 69 seconds. With this dataset the SOG training takes about 9 minutes for a 2D 

lattice with 𝑟!"# equal to 22 and a total of 484 output nodes and approximately 53 

minutes for a 3D lattice with 𝑟!"# equal to 10 and a total of 1000 output nodes. 

Within the SOG training total time an average 69% is spent for the SOM modified 

training, 16% for Isomap, 5% for the extrema search, and 2% for the data pre 

filtering. The data structure containing the vocal GC data is roughly 500KB for the 

2D case and 600KB for the 3D case, in which the greatest portion of 400KB is used 

to store the shortest path neighborhood graph of the Isomap dimensionality reduction. 

For the variant with multiclass LDA the time spent for dimensionality reduction as 

well as the memory occupation of the vocal GC data structure is lower. 

The control and synchronization with the DMI and the computation of the timbre 

descriptor in the DMI online analysis, performed at audio rate, usually requires a 

small fraction of the computational capacity of a single core. The complexity varies 

mostly with the window and step size. These are equal to 4096 and 16 samples 

respectively in the worst and most unlikely settings, in which we reach 100% single 

core load for 48KHz sampling rate. In Chapter 4 we related the DMI online analysis 

total time to the size of 𝐈, which in turn also affects the execution time of the offline 

DMI mapping. Thanks to the parameter interpolation, analyses with 𝐈 including from 

1K to 5K are generally sufficient to model the DMI and provide accurate sonic 

control. Here we consider a more complex case with a decaying sound generator 

analyzed for 11.5K parameter combinations, 50 analysis windows of 4096 samples 

each at 512 step size for each 𝐢, with 𝑇!"# equal to 100ms, requiring approximately 2 
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hours and 23 minutes for the online analysis. The decaying sound generator case 

presents the highest load for the dimensionality reduction stage since the 

dimensionality of 𝐃 is the highest. For this case the training took 27 minutes to 

generate the mapping for a 2D GC, while for the 3D it required 34 minutes. An 

average 53% of the time is spent for the ANN nonlinear regression, 19% for the 

uniform data redistribution, 8% for Isomap, and 3% on the mode dependent analysis. 

The output structure containing the data for 2D and 3D mappings is 2.7MB in size. 

The system training execution can be longer than the two cases discussed above 

if the training data size is larger. However larger datasets would only be necessary for 

high-complexity cases, while on average the amount of vocal data and DMI analyzed 

parameter combinations is about 40% lower than detailed above, requiring half of the 

execution time for the training. The dynamic memory consumption generally does 

not exceed 3GB. The MATLAB offline training functions are not optimized so that 

CPU and memory consumption can be sensibly reduced eliminating plots, removing 

intermediate evaluation routines, removing obsolete data from memory more 

frequently, optimizing loops, and parallelizing the computation, which is largely 

possible such as for the blind search. We estimate that there is enough room to reduce 

the execution time of each function by 50% to 70%. This can be further lowered 

downgrading the precision or termination condition in several components of the 

training procedure. The double float precision only used in MATLAB, is not essential 

and the porting to 32bit platforms is possible without performance decrease. 

For the runtime, the VCI4DMI Max/MSP patch computational complexity is 

dominated by the real-time vocal features computation and data visualizations, which 

can contribute an extra 50%. With the visualizations disabled and the patch stripped 

to the bare minimum, as described later in Section 6.3, the real-time constraints are 

satisfied on a single core system computing a new 𝐯 every 1ms and using the most 

complex low-level features settings from the blind search range (highest sampling 

rate, largest window, highest feature order). The load estimation also includes the 

audio channel pre-processing, the OSC data transmission, onset, pitch, and energy 

tracking for the MIDI note generator.  

The computational complexity of the vocal GC and DMI mapping implemented 

in MATLAB depends on the complexity of the system embedded in the data 

structures returned from the training algorithms. However these represent the 

bottleneck of the system, with the Isomap reduction and ANN 𝑚() contributing the 

most to the computational complexity. With the vocal GC and DMI mapping derived 

from the two high complexity range cases discussed before in the learning part, we 

obtain a maximum 𝐯 to 𝐢𝐨𝐮𝐭 rate of 5ms for the 2D case, and 10ms for the 3D case. 
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For this case the Isomap dimensionality reduction presents a neighborhood graph 

matrix with 3.5M entries, and the ANN has respectively 20 and 7 neurons in the two 

hidden layers. For these cases we profiled the joint GC and mapping execution over 

10 minutes of alternate use of the 2D and 3D configurations, with input gates always 

open and running with the most complex operational mode. The results indicate that 

the Isomap reduction is responsible for 26% of the total load, mostly due to the 

internal shortest path search Dijkstra (1959) algorithm. The ANN 𝑚() contributes 

12% of the load, the convex hull validity check contributes 8% especially from the 

3D cases, the OSC reception and transmission accounts for 12% and 7% respectively, 

the Euclidean distances used mostly in the DMI mapping routines comprise 10% of 

the load, the 𝐯 normalizations contributes slightly less than 2%, and the remaining 

23% is due to other computations accounting for less than 1% each. The semi-

supervised GC variant with the multiclass LDA dimensionality reduction results in a 

lighter GC load. The computational load profiling supports the fair partitioning of the 

computational cost between the vocal GC and DMI mapping parallel jobs. These 

results are obtained with Isomap and ANN mapping functions optimized for single 

input and real-time computation. The original versions provided in the respective 

toolboxes present higher computational load halving the maximum 𝐯 to 𝐢𝐨𝐮𝐭 rate. The 

OSC implementation in the MATLAB is not efficient compared to other programing 

environments, so there is potential for further computational load reduction. 

The computational limit of the vocal GC and DMI mapping is satisfactory for 

voice input since the acoustic characteristic of the voice is quasi-stationary below 

10ms to 20ms. The latency of the system is given by the sum of the voice analysis 

window and step lengths, plus a variable OSC network transmission delay, and it is 

typically below 24ms. This does not include the additional DMI-dependent time for 

the output sound to reflect the changes determined by updated input parameters. 

6.2 User and audience perspective 

In addition to numerical evaluation and proof-of-concept, the functional prototype of 

the VCI4DMI provides a valuable platform for the user evaluation of the interface 

principles and practical implementation, which is central in interface design. The 

voice-controlled interface presented in this thesis, as well as the software 

implementation, are the result of several cycles of iterative design (Nielsen, 1993) in 

which the usability issues, limitations and shortcomings, identified in the early 

versions of the prototypes, were progressively fixed and refined. The current version 
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of the system still has room for improvements, but provides usability, stability and 

features sufficient for use in real musical performance. The open-source code, the 

wide set of learning options and runtime modality settings promote the use of the 

system as a mapping exploration tool for researchers and musicians, and permits 

extensibility through the integration of internal modules in other musical interfaces. 

6.2.1 User perspective and workflow 

The minimization of the user interaction and expertise required to setup ad hoc vocal 

interface was among the design principles for VCI4DMI. The setup workflow, from 

the point of view of users familiar with the concept of voice timbre variation as a 

musical control gesture, requires the user to: 

1. record several instances of vocal-gestures; 

2. record vocal-postures with timbres included in the vocal-gestures set; 

3. train the vocal GC selecting the unsupervised or semi-supervised mode, and 

optionally define the output dimensionality; 

4. select the DMI target parameters ranges, resolution and analysis mode; 

5. run the DMI analysis and train the DMI mapping component of the interface. 

 

These steps require time but no action or input from the user in defining the mapping, 

and compared to supervised ML methods requiring coherent input-output examples, 

the preparation of the training set is relatively simple and quick. Although the two 

training procedures provide visual and numerical feedback pertaining to learning 

outcome and precision, the user cannot predict how the voice will be mapped to the 

GC output and in turn to the DMI sonic space. Therefore the price to pay for the use 

of unsupervised ML is the need for practice and familiarization with the 

automatically generated adaptive mapping. For this purpose the visual feedbacks play 

an essential role, as expected and verified in the user evaluation and described in the 

next chapter. Visualizing the interactive SOG lattice, the sonic space and 𝐠𝐜𝐨𝐮𝐭 

signals facilitate the performer process of understanding the voice to DMI sonic space 

relationship. The DMI parameter visual feedback is less significant, especially when 

more than three parameters are involved. The GUI runtime options, in particular the 

inversion of individual 𝐠𝐜𝐨𝐮𝐭 ranges and the adjustment of the 𝑖!"#, are essential to 

tune the VCI4DMI response according to the needs of the performer. After practicing 

and memorizing the mapping, performers are in general able to control the DMI with 

only the output sound as feedback. Moreover the numerous runtime operational 

options allow gradual adjustment of the interface between two extreme behaviors: the 
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univocal relationship between voice and instrument timbres, and timbre variations as 

trajectories and directions for the browsing of the sonic space. The interface modular 

design promotes the reusability of the vocal GC or DMI mapping in different vocal 

interfaces, and this can further accelerate the system setup. 

6.2.1.1 Limitations and drawbacks 

The SOG and DMI mapping method, as well as the prototype implementation, 

support any dimensionality 𝑀 for the uniformly distribute hypercube representing the 

intermediate layer connecting the two components of the VCI4DMI. The control 

benefits given by higher 𝑀 values are traded off by higher training time and runtime 

computational load, limiting the maximum voice features 𝐯 to DMI parameters 𝐢𝐨𝐮𝐭 

rate. The main issue with 𝑀 bigger than three is the inability to provide effective and 

cohesive visual feedback, crucial for learning and using the mapping. From the early 

use cases we observed a cognitive overload in the interface use and severe difficulties 

in interpreting the generated mapping, not in line with natural control and concurrent 

use design principles. With 𝑀 equal or larger than four we experienced overall 

usability and control poorer than the 2D and 3D systems trained with the same data 

set. This relates to the HCI principle that a key interface issue is the tight matching 

between control and perceptual structure of the task, thus the simply addition of more 

degrees of freedom does not necessarily result in any improvement (Jacob et al., 

1994). In the prototype we limit 𝑀 to three at most, which still provides rich and 

complex DMI control, due to the adaptation and effective control dimensionality 

reduction granted by the control strategy implemented in the perceptual sonic space. 

The vocal GC can also respond to vocal timbres not presented in the training set, 

and this can represent a shortcoming. Also, since we discarded the temporal 

unfolding information and we focused on the spatial distribution of the data, for the 

GC it is sufficient that the input sound generates a coordinate within the convex hull 

boundary. This can be considered a drawback or a creative improvisation potential of 

the interface, but it is intrinsic in the gestural data analytical approach we took in this 

work, which provides low latency and a higher degree of freedom compared to other 

methods based on input recognition tied to the temporal evolution of the voice timbre. 

6.2.2 Audience perspective 

In Chapter 2 we discussed that when novel DMIs and NIMEs are used in live 

performances, the audience needs to understand the relationship between gestures and 
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sound first to then recognize the skills of the performer. This is perceived as an 

embodied phenomenon, in which confidence and naturalness of the interaction 

determine the intimate incorporation of the instrument, considered as an extension of 

the performer (Fyans and Gurevich, 2011). The intelligibility and coherence of DMI 

interfaces are often issues for the audience. Moreover poorly visible interface bodies 

or the use of generic devices such as tablets and laptops, can result in a perception by 

the audience of lack of active creation and of visible causal link between performer 

and sonic result (Zadel and Scavone, 2006). Puckette, whose work contributed widely 

in bringing laptops on musical stages, recognizes the necessity of gestural legibility to 

support the audience understanding in live performances (Puckette, 1991). Visual and 

corporeal aspects are “extra-musical requirements” in performances, but if considered 

from the audience perspective, they make the playing action more committed, 

convincing and effective (Schloss, 2003). 

The VCI4DMI can present further performance perception issues because the 

voice is not a common musical interface input modality, furthermore the audience is 

not exposed to the gesture since the voice does not reach the listener through the 

loudspeakers. Moreover, in this context the interface is an abstraction, which only 

exists in the form of a software algorithm. There is no physical device capturing 

visible gestures besides a standard microphone. Finally during performances the 

VCI4DMI can be rapidly reconfigured, resulting in a drastic change of the voice to 

instrument relationship. Despite these issues, in performances exclusively based on 

the VCI4DMI we observed that the unusual interface input modality strongly 

captured the audience willingness to invest effort in understanding the interface 

control principles. Moreover the absence of a physical interface or general-purpose 

non-musical devices allowed the audience to focus on the visible performer vocal-

gesture. Although the voice is not audible, visual cues are still available and play an 

essential role. The relationship between mouth opening and DMI sound generation 

control was immediately evident. To a certain extent voice can be seen rather than 

heard (Mcgurk and Macdonald, 1976; Rosenblum and Saldaña, 1996) and the 

relationship between sound and mouth shape has been included in some musical 

interfaces and interactive systems (McLean, Shin, and Ng, 2013). Thus also in this 

case the audience can go through the gradual process of associating different vocal 

sounds, related to specific performer’s facial and body expressions, with instrument 

timbre response, and then acknowledge the performer’s musical control skills. 



 

 181 

6.3 Performance version 

Next we present an additional version of the runtime part of the prototype developed 

to meet the tighter requirements of a solo performance in which the VCI4DMI 

controls a set of DMIs hosted in Live. The DAW offers a powerful platform for 

musical performance, so we improve the integration between prototype and Live to 

facilitate configuration and use of complex setup. Moreover we reduce the system 

controls and feedback to fit into a minimalistic wrist controller to avoid laptop 

interaction on stage. 

6.3.1 Bank of settings and fast reconfiguration 

The prototype presented in 6.1, and in particular the runtime VCI4DMI, is effective 

for the vocal control of a single DMI, but it presents usability issues when the user 

wants to change while performing the target DMI or switch to a GC trained with a 

different vocal-gestures set. This required restarting the execution of the MATLAB 

runtime component with different vocal GC and DMI mapping data structures plus 

the modification of OSC settings in the target DMI front-end. In order to minimize 

reconfiguration time, we implemented a performance-oriented prototype version that 

at startup loads a bank of vocal GC data structures and a bank of DMI mapping data 

structures, with individual and independent OSC clients. The same vocal GC or DMI 

mapping data structure can be indefinitely replicated in the input banks and 

configured with different operational modes and settings. From the Max/MSP GUI 

the user can switch the vocal GC, the target DMI mapping, or both. This generates an 

OSC message for the MATLAB part that determines the temporary interruption of 

the vocal analysis in the runtime patch, the loading and of the new data structures, the 

internal vocal GC and DMI mapping components reconfiguration, the update of GUI 

features computation settings in the Max/MSP patch via OSC messages. When the 

sequence is completed the voice analysis is restarted and the newly configured 

VCI4DMI is ready for use. This process has been optimized and interface 

interruption for the reconfiguration takes less than 500ms. The two banks updated 

with modes and options set via the GUI are returned to the user upon execution 

termination. In Figure 6.9 we show the performance version of the voice analysis and 

runtime interface GUI Max/MSP patch, in which we added the extra performance 

control features, dedicated hardware system controller communication, pitch scale 

filter for the MIDI note generator, and excluded CPU consuming data visualizations. 
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Figure 6.9: Performance version of the voice analysis and runtime interface GUI Max/MSP patch. 
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6.3.2 Performance setup 

The live performance “One at a Time by Voice”24 that we presented at the 

NTU/ADM Symposium on Sound and Interactivity 2013 concert and at the 2014 

Margaret Guthman Musical Instrument Competition, aimed to demonstrate the 

musical control potential of the VCI4DMI. The performer builds an improvised 

composition interacting with a set of DMI hosted in Live using the voice as the sole 

input modality. The VCI4DMI is meant to be an extension to traditional controllers 

rather than an alternative, but this performance excludes other musical interfaces to 

facilitate the audience understanding of the mapping control strategy. In the setup we 

exploit Live DAW features by adding some features to the Max/MSP runtime patch. 

The user can store and recall working presets associated with: 

• a pair of vocal GC and DMI mapping from the bank loaded in MATLAB, 

determining a target DMI instrument in Live; 

• target a track in Live that receives the MIDI messages generated in the 

Max/MSP patch from the live voice input; 

• perform Live track recording, MIDI quantization and overdub. 

 

The set of instruments hosted in Live and controlled with the VCI4DMI includes 11 

synthesizers, 4 effects and 6 elements of a drum set. The performer changes the vocal 

interaction mode and currently controlled instrument just by pressing the preset 

button on the hardware interface. The DAW loops on four bars reproducing control 

parameters and events generated from the VCI4DMI and optionally recorded on each 

track. Thus the performer can “layer up” a musical piece interacting and recording 

one instrument at a time using the voice exclusively. The selection of a head-worn 

microphone in the performance, visible in the two stills of Figure 6.10, leaves the 

hands of the performer mostly free, which is a conscious choice to emphasize the 

possible concurrent use of the VCI4DMI with other hand-based interfaces. 

 

                                                        
24 Demo and performance videos available at http://stefanofasciani.com/vci4dmi.html 



 

 184 

 
Figure 6.10: “One at a Time by Voice” performed live at the NTU/ADM Symposium on 

Sound and Interactivity 2013 concert (left) and using the wrist-mounted special-purpose 

hardware interface at the 2014 Georgia Tech Margaret Guthman Musical Instrument 

Competition (right). 

6.3.3 Minimalistic wrist controller 

In the performance setup on the left of Figure 6.10 the laptop provides the essential 

feedback on the VCI4DMI status while the different interface preset recall and DAW 

recording options were mapped to the buttons of a standard MIDI controller. In order 

to remove the dependence on the laptop setup in performance, we developed a 

minimalistic wrist controller that provides sufficient system control and feedback. 

The core of the hardware, in Figure 6.11, is a Teensy 3.025 USB development board 

that features a 48MHz ARM Cortex-M4 32bit microcontroller, with peripherals, 

development environment, and libraries compatible with Arduino. The wrist 

controller is equipped with four push buttons, one rotary encoder with push button, 

one vibration motor, and a 160x128 pixel TFT LCF screen. The firmware running on 

the board implements a class compliant USB-MIDI device. The bidirectional 

communication with the Max/MSP runtime VCI4DMI patch is exclusively based on 

MIDI note-on/off and control change messages. A rotary encoder is used to browse 

the performance presets, identified on the LCD by a string of 5 characters, while the 

preset is selected and enabled by pressing the encoder push button. Three push 

buttons toggle the enabled/disabled state of the DAW track recording, the voice 

driven MIDI note generator, and the DMI default parameters on gate close. The 

                                                        
25 https://www.pjrc.com/store/teensy3.html 
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fourth button triggers a user defined MIDI note, allowing the use of the vocal control 

for DMI parameters generation only. On the screen the five colored LED-like 

indicators provides feedback on the working status of the interface and of the selected 

preset, the gates on the input voice in the Max/MSP patch, the voice driven MIDI 

note generator, the DMI default parameters on gate close, and the DAW recording. 

The note-on active state of the MIDI note generator is mapped on the vibration motor 

and on the border of the top screen region. The background of the screen turns red 

when errors or problems are detected within the system, such as overloading. A time 

progress indicator on screen, directly controlled from Live, informs the performer on 

the current position in the DAW four bar loop. Finally the live 𝐠𝐜𝐨𝐮𝐭 is mapped to the 

2D coordinate and color gradient of the square in the top section of the LCD. 

 

 
Figure 6.11: Minimalistic wrist device that provides all the core functionality and feedback 

necessary for performing with the VCI4DMI. 

6.4 Summary 

In this chapter we presented the implementation of the functional proof-of-concept 

prototype, which includes the offline learning algorithms and online mapping for the 

VCI4DMI system described in this thesis. We detailed technical aspects of the 

distributed software implementation, based on different development environment, 

and we discussed for each component the necessary input data and generated output 

results. In addition we presented the optimization strategy and the resulting 

computational complexity for a typical high demanding interfacing case. We 

analyzed the system from the user point of view, reviewing the procedure to set up ad 

hoc DMI interfaces responding to specific user vocal-gestures, highlighting 
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limitations and drawbacks. Moreover we briefly discussed the audience perspective 

on musical performances involving our novel interface. We concluded the chapter 

presenting a solo performance exclusively based on the VCI4DMI for which we 

developed a dedicated version of the prototype and a wrist physical controller to meet 

the tighter performance demands for musical control and instrument set interaction. 
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Chapter 7  
 

User Evaluation 
 

 

In this chapter we present the results of a study that involves users in evaluating the 

VCI4DMI system. Expert musicians and performers were invited to discover, 

explore, and perform with our novel interface, identify advantages and limitations of 

the vocal interaction, and discuss possible benefits of using the system in their 

specific performance scenarios. We begin the chapter briefly discussing methods and 

open issues in the evaluation of musical instruments and interfaces. Then we illustrate 

our specific methodology starting from the participant selection, going through the 

experimental setup and procedure, the interview guidelines, and finally the analysis 

strategy of the collected data. Then follows the presentation of qualitative and 

quantitative results of the formal study, including observations and key discoveries. 

The chapter ends with a discussion on findings versus initial expectations in 

performing with the VCI4DMI, highlighting drawbacks and limitations. 

7.1 Evaluation of instruments and interfaces 

A systematic strategy for the evaluation of musical instruments and controllers is 

challenging and previous studies in this the field still present conflicts, discrepancies 

and limited scope (Fels, 2004). The adoption of HCI evaluation methods are effective 

mostly for interfaces comparison within specific tasks, which are application and 

context dependent (Orio, Schnell, and Wanderley, 2001). These typically require 

quantitative empirical demonstrations about the functional advantages introduced by 

the new design. Timing and rhythm of tasks, as well as feedback interactions, are 

peculiar in musical context and have no obvious parallel in HCI. These represent 

additional challenges in determining solid experimental procedures. The majority of 

recent work on novel interfaces generally present informal evaluations or sometimes 

none at all (Stowell, 2010; Marquez-Borbon et al., 2011). Although highly 

innovative, most interfaces have been designed to fit specific inventor needs and 

ideas, making their comparison often meaningless. Bounding the evaluation span to a 

set of pre defined tasks, typical for HCI input devices, may restrict the view to 

original and artistic use of the interface, blending the different concepts of 
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controllability and expressivity (Dobrian and Koppelman, 2006). The advantages and 

drawbacks of each interface strongly depend on the individual evaluator background 

and aim. The design and evaluation of a DMI or musical interface involves several 

stakeholders. Performer, audience, designer, and eventually manufacturer, may have 

different evaluation goals and methodologies to measure enjoyment, playability, 

robustness and specifications achievement (O’Modhrain, 2011). Their perspectives 

affect different phases of the design cycle. The performer is the most important 

stakeholder because of his exclusive access to intention, result and interaction 

experience. In performer-centered evaluations the recruitment of subjects can be an 

issue if the available participant population is small, especially when the design 

addresses users with specific backgrounds and expertise (Wanderley and Orio, 2002). 

Therefore the evaluation strategy for small sample size should be focused on the 

identification of trends and patterns, since statistical measurement or generalization 

can be misleading or inconsistent. Moreover short evaluation sessions are sufficient 

to assess only traditional usability factors, while evaluating creative and exploratory 

affordances require observations over longer period (Gelineck and Serafin, 2009). 

The design of an interface is the rationale outcome of an engineering process, 

often driven by creative design. The final musical and aesthetic results can be 

subjective and criticized, but scientific methodology to verify the initial engineering 

principles is a key factor (Wanderley and Depalle, 2004). Therefore formal 

evaluations, qualitative or quantitative, are fundamental because they generalize the 

test outcomes and provide the basis to other researchers for further improvements and 

innovations. In the context of this thesis the user evaluation is complementary to the 

numerical quantitative results presented in the previous chapters and extended here. 

The user-centered evaluations are essential to determine how a novel interface is 

received and whether it enables creativity and expressivity, how it imposes or 

suggests new modes of thinking, interacting, and organize time or texture in music. 

Learnability, control efficiency, output diversity, reproducibility, virtuosity, linearity, 

and predictability are characteristics that contribute to make a “good” instrument or 

interface, and should be considered in design and evaluation phases (Jordà, 2004a; 

Jordà, 2004b). An instrument or interface expressivity is hard to quantify because it is 

highly subjective and depends on the performers control aim and output perception. 

In order to allow musicians to perform expressively, nuances must be transferred into 

different parameter domains and behavior modes (Malloch et al., 2006). Expressivity 

depends on and can be associated with the range of available choices, rather than with 

the number of controllable instrument parameters (Clarke, 1988), and it is also related 

to the dimensionality of the interface gestural control (Pressing, 1990). Further this is 
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also strongly influenced by the selection of the controlled DMI when evaluating 

interfaces only (Gelineck and Serafin, 2009). The lack of performer’s experience 

measurement in the evaluation methodologies can be addressed with non-intrusive 

monitoring of physiological data such as electroencephalography, electromyography, 

and galvanic skin response sensing (Kiefer, Collins, and Fitzpatrick, 2008). Formal 

user-centered evaluations do not guarantee effective musical interface design, though 

it can certainly identify poor ones, or eventual drawbacks and limitations. Moreover it 

enables user-centered iterative design (Norman and Draper, 1986) when considering 

feedback, further task requirements, and solicits for additional functional features in 

refining and re-implementing the interface. 

7.2 Method 

The VCI4DMI is neither an instrument nor an interface, but an unsupervised 

framework to implement generative mappings between voice and DMI. The specific 

interface depends on the training data that the user has provided and on the 

characteristic of the controlled DMI. Such systems are challenging to validate due to 

the lack of evaluative criteria (Marquez-Borbon et al., 2011). In the user evaluation, 

comparison with other voice driven system is impractical because related prototypes 

are not distributed and because they are too different in scope and aims from the 

novel and unique features of the VCI4DMI. Finding participants with previous 

experience in vocal control is highly unlikely too. Our evaluation method is not 

limited to measurements and observation of use-cases and specific tasks, but it 

includes free exploration of the system, from which we attempt to identify user 

experience, embodied interaction, value-sensitive design, and affective computing 

(Harrison, Tatar, and Sengers, 2007) by analyzing the audio-video recordings and the 

interface activity logs. The qualitative evaluation is mainly based on the analysis of 

the recorded individual open-ended in-depth interviews. Each subject was 

interviewed before and after the using the VCI4DMI to determine the individual 

perspective on the system, aiming to identify pattern and trends, as well as limitations 

and directions for improvement. 

7.2.1 Participants recruitment and selection 

In qualitative research, the selection of appropriate size and composition of the 

sample involved in the study is critical. For phenomenological research, which 
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describes a lived experience, a range from 6 to 12 participants has been reported as 

sufficient due to the emergence of thematic redundancy after hearing half of the 

subjects (Thomas and Pollio, 2004). A more recent trend, with practicality issues, 

does not pre-establish the sample size but ends the study only when reaching 

theoretical saturation in the results (Guest, Bunce, and Johnson, 2006). Qualitative 

studies are mainly focused on a small number of participants who represent the 

phenomena of interest, but participants should be purposely selected to represent rich 

knowledge about the study questions (Gubrium, 2012). In our study we fixed the 

initial sample size to 10 subjects but we recruited 6 additional participants for further 

investigation if results turned out to be conflicting or unclear. The relatively low 

sample size favors the ability to probe participants’ deeper and protracted use of the 

VCI4DMI, and increases the pertinence of interview data with the interface 

experience. 

The VCI4DMI has been designed to provide an additional layer of control to 

musicians using DMIs in their performances, which span from players utilizing minor 

audio processing to the sound of their acoustic instruments, to DJs and live remixers 

mixing and filtering pre recorded sound material, including songs and samples 

libraries. We recruited participants from this wide category, favoring experienced 

professionals or semi-professional musicians, with no formal training in singing, age 

ranging between 21 and 65, and we selected the most heterogeneous sample that can 

provide multiple perspectives while being representative of the general potential user 

population (Highhouse and Gillespie, 2009). We recruited participants by snowball 

sampling (Goodman, 1961) and posting an advertisement on bulletin boards of local 

communities of electronic musicians, music technologists, DJs and composers. The 

advertisement introduced the research context, summarized the study protocol, but 

did not include specific details on the subject of the study other than the generic title 

“voice-controlled interface for digital musical instrument”, to prevent participant 

biasing. Interested subjects were asked to provide a brief profile, including their 

performance practices and relevant experiences, to determine the most appropriate 

and diversified participants sample. The recruitment lasted for approximately 2 

months while the 10 individual evaluation sessions were conducted within 3 weeks. 

7.2.2 Experimental setup 

Identical setup and environmental conditions were used for the 10 evaluation 

sessions. To let the participants feel comfortable and ease eventual inhibition we ran 

the interviews and evaluations in a soundproof closed room, with a camcorder placed 
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in a corner and facing the side of the participants. The VCI4DMI used in the 

evaluation is slightly precedent to the final version presented in Chapter 6, but it 

includes identical functionalities, control capabilities, support for mapping banks, and 

it was derived from preliminary user-centered design iterations. To facilitate the 

exploration and interaction with our novel system the GUI grouped and highlighted 

the sections to adjust different components of the system, and these were also mapped 

to a hardware interface with labels and LED feedback, as in Figure 7.1. Eight 

different DMIs, hosted in Live, were selected for this study, covering a broad range 

of possibilities. The DMI analysis and mapping computation were executed 

beforehand. This avoided spending a significant fraction of the sessions for 

instrument selection and training, and it allowed the presentation of an identical 

experimental setup to all participants. However we illustrated to participants the 

principles and a demo of the DMI parameter-to-sound perceptual analysis and of the 

control strategy implemented starting from the DMI specific sonic space. Further, 

participants were likely to be new to the abstraction of simultaneous parameter 

control through dimensionally reduced sonic space, so we included simple DMI cases 

with a low number of variable parameters and space entries. The experimental 

instrument set is presented in Table 7.1, which includes DMI details, type, analysis 

mode, number of controlled parameters and entries in the sonic or parameter spaces. 

 

ID DMI$Description Type Analysis$Mode #$Params Space$Entries
1 Wavetable)Based-Synth Generator Decaying 4 5324
2 Wavetable)Based-Synth Generator Decaying 5 11664
3 FM-Synth Generator Steady-Timbre 6 4840
4 Virtual-Modular-Synth Generator Steady-Timbre 4 1296
5 Granular-Synth Generator Variable-Timbre 5 7116
6 Delay+Reverb-Chain Processor Time-IR 3 388
7 Low-Pass-Filter Processor Freq.-Steady-Timbre 2 478
8 Guitar-Amp-Emulator Processor Freq.-Steady-Timbre 5 7200  

Table 7.1: Characteristics of the DMIs pre-analyzed and available for use in the evaluation 

sessions. 

 

The sound generators could be triggered with an external piano-like MIDI keyboard, 

with the VCI4DMI note generator, or with midi clips triggered from a dedicated 

controller, used as well to launch a selection of music loops for the sound processors 

input. Hence the setup included a keyboard and a clip launching button matrix. Users 

were free to configure and perform with the available devices and the DAW 

according to their personal preferences, as well as to simultaneously use the vocal 

interface and hand-based controllers. A large 46-inch screen was used to display the 
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interface visual feedback and the DAW, while the VCI4DMI GUI was displayed on a 

smaller 15-inch laptop screen. Finally a head-worn microphone facilitated the 

simultaneous use of hand-based controllers for playing the DMIs or tuning the 

VCI4DMI. The experimental setup is visible in Figure 7.2, in which the additional 

microphone and laptop are only for interviewing and audio recording purposes. 

The participants provided vocal-gestures and vocal-postures for training two 

different 2D vocal GCs, reducing the dimensionality with Isomap and multiclass 

LDA respectively, and one Isomap based 3D vocal GC. Moreover we reduced by a 

factor of 4 the number of configurations considered in the features setting blind 

search to minimize the training time. The VCI4DMI hardware controller allowed the 

user to select and pair any available vocal GC and DMI mapping. As in the 

performance version, the VCI4DMI used for evaluation supports runtime GC and 

mapping reconfiguration, operational modes and functional options store and recall, 

automatic DAW MIDI and OSC messages routing to the specific DMI. 

 

 
Figure 7.1: Hardware interface with labels and LED feedback to control and tune the 

VCI4DMI, including vocal GC and DMI mapping selection, operational modes, and 

additional functional options. 
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Figure 7.2: User evaluations experimental setup. 

7.2.3 Protocol 

In each user evaluation session we followed the protocol summarized below, 

developed by running two preliminary sessions with additional subjects for which we 

did not include the collected data in the study. 

 

1. Brief illustration of the evaluation session protocol, participant’s rights, study 

aim and research context. 

2. Start audio-video recording. 

3. First interview. 

4. Description and demo of the overall VCI4DMI for vocal simultaneous real-

valued parameters control. 

5. Introduction of vocal-posture and vocal-gesture concepts, explanation of 

vocal GC principles. 

6. Recording and editing of voice training data set and vocal GC training. 

7. Illustration of the DMI analysis method and demo of reduced sonic space 

control with a 2D pad. 

8. Description and demo of the interface visual feedback, and main runtime 

mapping tuning options. 
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9. Illustration of the set of available DMIs, vocal GCs, and hardware interfaces, 

and instrument triggering/control modes. 

10. Assisted use and familiarization with the system. 

11. Free practicing and system exploration. 

12. Select the preferred pair of vocal GC and DMI mapping with the related 

operational modes and functional options and repeat twice the following 

sequence of tests: 

a. select 4 different vocal-postures aiming for 4 different steady DMI 

sonic outputs, and maintain each posture for at least 4 seconds in 3 

non-consecutive attempts; 

b. select and perform 2 different gestures and repeat each 3 times 

aiming for identical DMI output sonic variation; 

c. generate as many as possible different DMI sonic outputs varying the 

voice timbre within 60 seconds of use. 

13. Further free exploration and performing. 

14. Second interview. 

15. Stop audio-video recording, save recordings and interface logs. 

 

We limited the duration of the evaluation session to a maximum of 90 minutes, 

dedicating roughly 15-20 minutes for each interview, and at least 30 minutes for the 

VCI4DMI free use and exploration. System explanation, illustration, and 

demonstration are essential for the participant to understanding the novel features of 

the system. A critical issue for the appropriate training of the system was the 

introduction of the concept of vocal-gesture and the GC principles. We pointed out to 

the participants that the temporal unfolding of the voice timbre variation is not 

considered in the system, while the focus is on the spatial distribution. We illustrated 

this abstraction showing graphical representations, reduced to 2D, of other vocal-

gestures that ideally fill an arbitrary shape. Audio examples were presented as well. 

We suggested, but not forced, participants to use vowels as vocal-postures and 

instances of vowel gilding as vocal-gestures, easier for new users. In the assisted use 

we asked participants to become familiar with the 2D vocal GC first, looking at the 

GC visual feedback on screen, and only later focused on the DMI mapping 

component. During the free exploration, participants were left alone testing and 

performing with the system in the way they preferred. We intervened only when the 

participants asked for further clarifications or when we noticed them having major 

difficulties in using the system. 
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7.2.4 Interviews aim and guideline 

The aims of the two interviews held during the sessions are distinct. In the first the 

objective is to outline the participants’ profile, their relevant experience in musical 

performances involving DMIs, and their performance practice. In particular we focus 

on the interfaces components, mapping, and usability constraints. Moreover we 

question the subjects about personal perspective, ideas, and experience with any 

voice driven system, not necessarily in the musical context. The second interview 

represents the core of the qualitative evaluation, and it aims to highlight 

understanding, experience, and perceptions of advantages and drawbacks related to 

the VCI4DMI. In particular we encouraged the subjects to criticize the interface they 

used in the light of their musical expertise, and we discuss the application in 

performance contexts with which they are familiar as player or audience. 

In both in-depth face-to-face interviews we used the same discovery-oriented 

strategy (Kvale, 1996; Boyce and Neale, 2006), asking open-ended questions that 

allow the interviewer to deeply investigate participants perspective and experience 

with the novel interface, and the respondent to freely answer questions using their 

own words. The semi-structured and conversational format of the interviews allows 

for unexpected digressions to divert the planned question sequence and follow the 

participant’s interest or knowledge. These are often significant and productive for the 

aim of the study. However the interviewer has to guarantee that the conversation does 

not flow towards irrelevant topics. The interviewer has to be an active listener, 

flexible, responsive, able to reshape questions interpreting the previous responses, 

and seek clarity of the answers. The audio-video recording allows the interviewer to 

focus only on the conversation rather than registering the responses of the 

participants. In the first interview we start briefly explaining the purposes of the 

interview and asking some introductory icebreaker questions to get the ball rolling. 

Both interviews conclude with the interviewer summarizing the main points 

understood from the participant’s responses. Summaries of the pre-planned interview 

questions are listed below. 

 

First interview: 

a. Personal information. 

b. Roles and experiences in computer/electronic music, music technology, 

musical instruments. 

c. Nature of, practices and preferences, in live musical performances. 

d. Instruments and equipment used in live performances. 
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e. Details and motivation about instrument interfaces, input modality, 

gesture capturing sensors, and interaction established with the 

instruments. 

f. Motivation and description of eventual musical control delegated to 

automations or pre recorded/programmed sequencers. 

g. Advantages and limitations of performance instrument setup, especially 

related to interface characteristics. 

h. Brainstorming on solutions to allocate extra musical intentions, if any, or 

to overcome recurrent interface limitations. 

i. Use of voice in performances e.g. singing or communications. 

j. Previous experiences and reason for using/not-using voice driven system. 

k. Major concerns, limitations and advantages with voice driven systems. 

l. Imagine and describe an ideal voice-to-DMI interaction system. 

m. Additional thoughts on interview topics. 

 

Second interview: 

a. Description of the system used, using personal/informal terminology. 

b. List advantages, limitations, and drawbacks of the interface. 

c. Changes and improvements in the VCI4DMI system. 

d. Feelings on vocal interaction and control toward DMI sound 

characteristics and control parameters. 

e. Discussion on practicing and skills required for mastering the use of the 

VCI4DMI. 

f. Usefulness, benefits and shortcomings of the different visual feedback. 

g. Impact of system operational modes and functional options on interface 

response according to personal preferences. 

h. VCI4DMI as alternative or extension to traditional interfaces. 

i. Given the suggested improvements, illustrations of possible applications 

and benefits in familiar live performances contexts. 

j. Interest in and detail of further use and training of the VCI4DMI with 

personal instrument set. 

k. Additional thoughts and feedback relevant or beneficial to the project. 

7.2.5 Qualitative and quantitative evaluation methods 

The qualitative and quantitative evaluation of this study is based on the data recorded 

during the whole of the user evaluation sessions, including the audio-video recorded 
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interviews, the log of the VCI4DMI that tracks working modality and the streams of 

input voice low-level features, GC output, and DMI output parameters stream. 

Additionally we record the audio signals from the microphone connected to and 

DMIs controlled with the VCI4DMI system. 

We transcribed and annotated the data from audio-video recordings of the 

interviews prior to the VCI4DMI usage. These were analyzed and filtered to 

determine the profile of each subject, which includes details on expertise relevant to 

the aim of this study. Moreover from each transcription we extract the participants’ 

opinions on three main arguments: limitations of performer-instruments interaction in 

musical performances, voice HCI, and possible application of voice for musical 

control. The detailed profiles allow us to compare and correlate the study results with 

eventual specific profile characteristics. 

The analysis of the participants’ interviews regarding their experience with the 

VCI4DMI represents the core of this qualitative evaluation. We started with a time-

stamped transcription of the audio-video recordings. Then the transcription and video 

was further annotated, normalized into non-colloquial text, labeled by relevant topics, 

organized at higher hierarchical levels in order to synthesize the participants’ answers 

to the key questions (Kvale and Brinkmann, 2008; Bryman, 2012), while maintaining 

time alignment between analysis and raw data. For the analysis we worked in two 

directions: we look for answers to specific arguments on interface use and 

experiences that define the participant conceptualization of the VCI4DMI, but the 

open-ended questions stimulated conversations in which participant freely expressed 

their thoughts across different topics. For this component of the interviews, having no 

prior expectation about the contents, we operated in a reverse fashion coding and 

grouping the annotations into more abstract categories from which we try to draw 

conclusions, similar to grounded theory methodology (Martin and Turner, 1986). In 

order to validate, and then generalize, the respondents information we used the 

triangulation method (Rothbauer, 2008), specific opinions and evaluation of the 

system had to be verified by multiple participants, preferably with substantially 

different profiles. For the time-stamped transcription and annotation of the videos, as 

well as for the definition of the analysis system we used the Multimodal Analysis 

Video26 software (O’Halloran et al., 2012; O’Halloran, Tan, and E, 2014) that 

provides a single framework from the analysis through to the visualization of the 

results. In this context the analysis of open-ended interviews provides an accurate 

representation of the participants judgments, especially compared to a survey based 

                                                        
26 http://multimodal-analysis.com/products/multimodal-analysis-video/ 
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on Likert scales (Likert, 1932), which are common in HCI user evaluations. First the 

selection of the measurement scale determines the statistical method used for 

analyzing the data (Zumbo and Zimmerman, 1993), but when the sample size is 

small, statistics may have no relevance. Secondly data from evaluation scales should 

be understood within the context of how such ratings are made. When the 

respondents sample is not uniform, each participant may use a different "frame of 

reference" and "standard of comparison" when interpreting questions and making 

judgments. Striking contradictions between data collected from Likert scales and free 

text answers has been observed (Ogden and Lo, 2012). Therefore in our evaluation 

we chose open-ended interviews due to the small sample size and due to the rating 

scale bias determined by different participants’ age, background culture, performance 

practices, played instrument, and exposure to this research field. Moreover it would 

have been difficult for participants to define a frame of reference for the VCI4DMI 

because vocal interfaces are not common in the musical context. 

Furthermore the free practice and performing video recording, with the optional 

aid of the interface log, were inspected and annotated to identify eventual patterns in 

practices, behaviors and other exceptional and unexpected issues. Finally for the 

quantitative evaluation we use the interface log to compute a set of numeric 

measurements and ratings related to the three use-cases described in the protocol 

sections 12.a, 12.b, and 12.c. In particular these measure interface reliability, 

usability, and the repeatability, versus the interface design principles. 

7.3 Results 

The qualitative and quantitative results of the user evaluation are separated into four 

sub-topics, each presented in the following subsections.  

7.3.1 Participants profile 

In Table 7.2 we present the profiles of the 10 subjects that participated in this study. 

The fourth column summarizes their relevant musical expertise besides the live 

performances, where the tag builder indicated prior experiences in designing 

hardware or software for musical instrument, interfaces, or interactive musical 

systems. For performances description the tag “electronic music” includes a 

significant use of samples and music loops, generally related to dance music genres, 

while the use of pre-recorded material is very limited in “live electronics” 
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performances. In the last two columns we indicate if the participants are aware about 

DMIs and interfaces besides state-of-the-art consumer products, such as those built 

by the research and do-it-yourself communities, and whether they are aware of 

research in computer music. Several participants have multiple positions and roles in 

relation to music. 
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Table 7.2: User evaluation participants’ profiles. 
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The profiles show differentiation in expertise, performance practice, and instrument 

setup, though all subjects have significant experience in one form or another. 

Although a laptop running a DAW is a common choice in electronic music setup, 

these vary in implementation and functional application across subjects. All subjects 

reported that when performing, the voice was an unused communication channel, 

although some are eventually engaged in backup singing or vocoder use for limited 

time intervals. 

In Table 7.3 we present a summary of the main topics discussed in the interviews 

before the VCI4DMI usage, derived labeling and normalizing the interview 

transcriptions. The table repeats the instrument setup field to facilitate associations 

and comparisons. Although there is a clear diversity in the answers, we can identify 

the recurrent trends listed below. 

• Instrument interfaces often include only general-purpose push buttons, 

faders, dials, encoders, and their equivalents implemented on touchscreens. 

This implies that participants implement their own mappings and that in 

performances the hands-to-interface bandwidth is fully saturated. 

• Pre-programmed dynamic automations of parameters or musical event were 

widely used in performances by all participants, with the exception of those 

including basic and non-programmable DMIs in their setup. The main 

reasons for using automations are their reliability, high precision, the 

difficulty or impossibility of manual execution, or the number of parts or 

variable parameters being too high for a single performer control. These 

issues have also been addressed with the use of pre-recorded loops and clips. 

• Participants discussed interface limitations experienced in their previous 

work as ranging from a lack of sonic expressivity, the need to simultaneously 

play and tweak parameters, and poor efficiency in specific tasks related to 

non-quantized controls such as those mapping continuous gestures to 

continuous parameters. To overcome these limitations most respondents 

proposed smart improvements over their existing interfaces, while only a 

minority suggested to use other spare bandwidth channels or to increase the 

dimensions of the existing gestural input. 

• With only one exception no one had previously made regular use of a voice-

driven system, although everyone had tried at least a few times, mostly 

because they had accidentally stumbled across such an application on their 

mobile phones. Participant experiences were limited only to speech/words 

recognition systems. We speculate that this contributes lack of expressing 
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ideas about considering the voice bandwidth for easing the interfaces 

limitations they had experienced. The main concerns they expressed, 

experienced or supposed, with voice-driven systems were the poor accuracy 

and the difficulties posed by noisy environments. 

• When imagining voice to instrument interaction, as well as when proposing 

solutions to limitations, we notice a correlation with individual expertise, 

experiences, and musical instrument skills. Approximately half of the 

participants proposed to use speech recognition techniques as a surrogate for 

driving instrument with voice commands (e.g. set parameters X to 0.6) 

perhaps because they were not aware of non-verbal voice HCI possibilities, 

and some raised appropriate concerns on the resulting latency they supposed 

would plague the musical use of such systems. The remaining instead 

proposed to track voice features to control or modulate continuous instrument 

parameters, which is close to the solution we propose, but had doubts in 

particular about the potential for loudspeaker to microphone feedback. 

 

Two interesting observations were recorded from Participant 6 and Participant 9. The 

first claimed that the poor expressivity with some DMI interfaces is due to the total 

lack of formal and sustained training that people generally get with electronic 

interfaces compared to acoustic instruments, whose require years of instruction and 

practice to perform satisfactorily. Moreover with novel interfaces we are pioneering 

in exploring and defining new methods for playing and skill refinement, which 

simply haven’t been established yet, as observed by Ryan (1992) two decades ago. 

The second argued that interface limitations are not only the drawback. Interfaces are 

important and must be transparent to audiences because this allows them to see how 

far a performer can go within the physical constraints and limitations of a specific 

musical instrument or interface, and they can then understand the music better and 

evaluate the virtuosity of the performer. 
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Table 7.3: User evaluation first interview key topic responses summary. 
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7.3.2 VCI4DMI users qualitative evaluation  

A summary of participants’ answers to the key questions about the VCI4DMI 

experience is presented in Table 7.4, where the answers are grouped and normalized 

from colloquial non-technical terminology to a concise and formal language. Figures 

7.3-4 show respectively footage of user evaluation sessions and a screenshot of the 

software used for interview transcription, annotation and analysis. In Figures 7.5-8 

there are four examples of DMI vocal control, showing a correlation between vocal-

gesture and timbre variation. These include spectrograms of voice and resulting 

instrument sound for three sound generators with sustained timbre, and one sound 

generator with decaying timbre. For the last example the voice note generator was 

enabled in the VCI4DMI. 

The main findings from the user qualitative evaluation are listed below. 

• Every participant described the system as a voice to multiple DMI parameters 

controller, showing a clear understanding of the interface main purpose, and 

some mentioned also the concept of adaptive mapping and training. Positive 

and beneficial aspects of the VCI4DMI that participants mentioned in 

different phases of the interview includes the high expressivity, intuitive and 

natural use, extra control dimension, wide and dynamic sonic range of the 

output, smooth response, and low application constraints. Respondents 

proposed the use of the VCI4DMI as an extension to traditional interfaces 

that provide an additional control layer in a wide range of performance 

contexts, but some suggested as well the use as the sole interface because of a 

sense that it would be “cool” and “very unusual” for spectators. Most 

participants recognized at least one possible application in their performance 

context to overcome their instrument setup limitations, discussed in the first 

interview. These opinions were essentially uniform across individual 

evaluations and in agreement with the motivation, aim, and principle of this 

work. 

• The discussion on drawbacks and limitations of the VCI4DMI presented very 

diversified answers supporting the need for this study, which identifies 

further usability improvement. Some are contrasting with positive interface 

features described by other respondents. These were usually just due to 

inappropriate system tuning, and can be addressed easily by users familiar 

with the interface response to system setting variation. Most feedback about 

the shortcomings of the VCI4DMI included suggestions to simplify the GUI, 

exposing only few tuning parameters in a basic user mode, while showing the 
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complete set in a separate advanced view. Moreover participants suggested to 

further integrate the implementation and put everything into a plug-and play 

hardware or software box, including ready to use mappings. This does not 

necessarily imply reduction of the system’s adaptive and learning potential. 

Some cross-speaker maps can be computed and provided with the system for 

simple control tasks, leaving the choice to run personalized system training to 

the user. Indeed most participants also explained that a simple two-parameter 

vocal control it would be a great improvement with commercial value, 

although would not make a great contribution to the scientific field. Finally 

three participants argued that adding a mapping mode that directly associates 

voice and DMI timbre by their similarities would further simplify usability 

and learnability. 

• Feedback in the VCI4DMI was addressed with three different interactive 

graphical representations. All participants found these essential for proper 

learning of the specific mapping response. Most argued that when familiar 

with the mappings, the visual feedback is not necessary or that is distracting 

for performances, unless presented in a minimalistic form. Participants found 

the first use easy and intuitive, but recognized some issues in achieving the 

desired vocal control. Nevertheless users experienced improvements in just 

30 minutes of free practicing, and they agree that practicing is essential to 

master vocal control skills as well as familiarizing oneself with the different 

use modalities and training procedure provided in the VCI4DMI system. 

However some expressed concerns about the different control skills that 

might be required to master for each new pair of voice GC or DMI mapping. 

• Approximately two thirds of the subjects expressed the feeling of vocally 

interacting with a sonic object, so that the mental abstraction in the control 

process was voice-to-sound. Some argued that in this process they tried to 

establish a relationship with the GC output space first, totally ignoring DMI 

parameters and sound. They focused also on parameters for simple DMI 

mappings such as for the simple control of the frequency and resonance of 

the low pass filter. The remaining participants used the VCI4DMI still with a 

mental abstraction of voice to parameters, which may prove challenging due 

to the potential non-bijective parameters-to-sound relationship. This group 

response was due to their unfamiliarity with the available DMIs, so that they 

were exploring the parameters-to-sound response first. They argued that 

training and using the interface with their DMI setup might allow focusing on 

sonic response only. Participants assume that the VCI4DMI use with their 
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own personal DMIs might have been easier for them, and more accurately 

performed, although more difficult to compare for the aim of this study. 

 

From the interview analysis we also observed that participants consider the 

simultaneous multi-parametric control more important than the absolute control 

precision for instrument expressivity in performances, which is more challenging 

with the VCI4DMI and may require a learning curve similar to those of some 

acoustic instruments. This can also provide better endurance as many objected that 

the interface is vocally tiring. We noticed that the machine learning, which is central 

to the VCI4DMI, was rarely mentioned in the interviews. We speculate that this is 

due to being relatively hidden in the protocol. In fact participants were assisted in the 

training of the vocal GC, and DMI adaptive mapping was computed beforehand and 

only briefly demonstrated. However we believe that the VCI4DMI approach for 

unsupervised and automatic mapping generation does not make apparent the ML 

training component especially to novice users. 

Comparing the interview analyses and considering the fraction of time spent 

discussing specific topics, we noticed that the more experienced participants, aware 

of the research in this field, were more critical and spent a considerable amount of 

time proposing improvements or alternative interface principles. Younger and less 

experienced participants mostly addressed implementation issues and also provided a 

wider spectrum of possible application scenarios. With few exceptions the individual 

musical expertise did not constrain the vision of the possibilities for the system and 

possible benefits beyond the individuals’ musical scope. In evaluating the key 

features, usability, and personal perspectives on the system, participants showed an 

overall agreement and uniformity in their responses, especially on beneficial features, 

control abstraction, learning curve and implementation issues. 
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Table 7.4: User evaluation second interview key topic responses summary. 
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Figure 7.3: Footage of participant engaged in VCI4DMI exploration and interviews within the 

evaluation sessions. 

 

 

 
Figure 7.4: Screenshot of the software used for transcription, annotation, and analysis of the 

recorded interviews. Details of the transcription and selected annotation system on top, 

transcription and labeled annotation aligned to the video timeline on the bottom. 
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Figure 7.5: Example of DMI ID-3 vocal control, with the instrument sound spectrogram on 

top and the driving vocal-gesture spectrogram on bottom. 

 

 
Figure 7.6: Example of DMI ID-4 vocal control, with the instrument sound spectrogram on 

top and the driving vocal-gesture spectrogram on bottom. 

 

 
Figure 7.7: Example of DMI ID-5 vocal control, with the instrument sound spectrogram on 

top and the driving vocal-gesture spectrogram on bottom. 
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Figure 7.8: Example of DMI ID-5 vocal control plus note generator, with the instrument 

sound spectrogram on top and the driving vocal-gesture spectrogram on bottom. 

7.3.3 Users free practicing and performing observations 

Examining the recordings of the participants engaged in freely exploring and 

performing with the VCI4DMI we identified patterns or exceptions that were 

unexpected, in contrast with or undisclosed in the interview responses. The 

participants’ experience, expertise, musical skills, understanding of VCI4DMI 

mapping principles, and familiarity with the DAW had little effect the approach to the 

interface. They started randomly exploring the response to then pass to a more 

systematic phase in which they tried to control the GC first and then the DMI sound. 

Most struggled in understanding the functionality of all available options, and limited 

the tuning to a few settings that turned out to be the most effective in adjusting the 

response. The radial distance limiting the sonic space search, the voice feature low 

pass filter cutoff, and the SOG lattice scale factor were recurrent choices for 

adjustments. 

The DMI mappings presenting a higher number of entries in the sonic space were 

generally more difficult to use, despite the good ANN fitting identified by low mean 

squared error. We recognize that with a lower number of entries, between 1k and 3k, 

we set the analysis option for spending more time per state for the perceptual timbre 

analysis, resulting in a more accurate sonic mapping. Furthermore, the IDW 

interpolation provides a smoother control in browsing the sonic space with fewer 

entries, and this in turn minimizes any residual detrimental effect of the non-bijective 

sound-to-parameters relationship. The number DMI of variable parameters was 

totally uncorrelated with the ease or difficulty of use of a specific DMI mapping, 
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suggesting the parameter space is totally transparent to the user with the proposed 

control strategy implemented in the sonic space. 

We noticed that participants tuned the voice pitch to the instrument sound when 

engaged in controlling sustained sound generators. In some cases, this resulted in a 

large gap in voice pitch between training and control phases, and in a few cases this 

limited access to certain sub-regions of the GC output space. This issue can be 

addressed within the interface, but the user should also guarantee consistency with 

the training vocal-gestures while using the system. Hearing one’s own voice was 

mentioned as a disturbing feedback for some users and essential for others, so that 

they adjusted the DMI volume accordingly, or requested for headphones. 

Although most subjects suggested the use of the VCI4DMI as extensions to 

traditional controllers to enable the concurrent use of more interfaces, only three 

participants effectively tested such a configuration during the free exploration. Most 

explained that they knew they could have played a keyboard at the same time, but 

preferred to focus on understanding and tuning the VCI4DMI system. The voice note 

generator was poorly exploited as well. Few participants explored the DMI sonic 

spaces directly controlling the parameters explicitly mapped to an external hardware 

controller, to compare and understand the possible sonic range with a traditional 

control strategy. Finally we noticed that the two subjects who reported most issues in 

reliable control were those that provided the poorest vocal training data set, in which 

the vocal-gestures included little timbre variation and long vocal-posture-like 

intervals. This suggests the implementation of an intuitive rating feedback on training 

data and vocal GC training outcome. 

7.3.4 Use-cases quantitative evaluation 

Step 12 of the protocol describes three use-cases that each participant performed after 

selecting the preferred pair of vocal GC and DMI mapping with the related 

operational modes. The results are presented in results Table 7.5, in which the first 

four columns describe each participant’s VCI4DMI configuration. In particular it 

includes the selected GC dimensionality, the reduction mode, the selected instrument 

from those available in Table 7.1, the DMI mapping and search modes. For the use-

case described in 12.a, we evaluate the stability over vocal-postures, measuring and 

comparing the average standard deviation for the voice low-level features, GC output 

and DMI generated parameters. Moreover for the different instances of identical 

vocal-postures we evaluate the resulting average distance in the voice feature, sonic, 

and parameter spaces. This evaluates the use repeatability that the interface offers, 
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also addressed in relation to vocal-gestures in use-case 12.b, in which we measured 

the average difference in the same three spaces. However prior to comparison, the 

vocal-gesture derived data has been equalized in length aligning the multidimensional 

streams using a technique based on dynamic time warping (Turetsky and Ellis, 2003). 

Finally coverage of the GC, sonic, and parameter spaces are measured on the data 

collected from use-case 12.c. In Table 7.5 the results are averaged per participant 

over the multiple instances and test repetitions, as defined in the use-case protocol. 

Participants had no feedback on accuracy, precision or completion of each task. 
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Table 7.5: Participants’ preferred VCI4DMI configuration and measurements related to three 

different use-cases. 

 

Analyzing the participants’ preferred configuration, shown in Table 7.5, we observe 

that the 2D gestural controllers were always selected. The 3D mappings were more 

difficult to use and we suppose that the limited expressivity improvement they 

provide in many cases, as illustrated in the Chapter 5 evaluation results, were not 

worth the higher cognitive complexity given by the extra dimension, at least for first 

time users. The multiclass LDA variant was preferred by a small group of subjects 

that had difficulties in finding vocal-postures close to the GC vertices with the 

Isomap mode. The most widely preferred DMI mapping mode method was the ANN-

derived function, while choices on the search settings are very different. The search 

mode, within a user-defined parameter radius or within the parameter’s Moore 

neighborhood, was identified by most participants as the most effective setting in 

changing the interface-to-DMI behavior, often addressed as “sensitivity”, and 
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therefore we observe different choices that actually determine diverse vocal 

interaction. The span of DMI selection is wide as well but it also involves sonic 

aesthetic factors. However the DMI 4, which is the generator with the lowest number 

of entries in the sonic space is the most recurrent choice that users associated with 

improved usability and response. The results in Table 7.5 were obtained with the 

IDW in the vocal GC and in the DMI mapping enabled, as well as the input voice 

energy gate. The GC lattice search mode was always set to the Moore neighborhood. 

The results in the first three columns of use-case (a) shows an overall small 

standard deviation for the voice features, GC output and DMI parameters determined 

by vocal-postures. The proposed method with noisy feature filtering already results in 

a small deviation in the feature space. This is further reduced in the GC output space, 

while it can slightly increase in the parameter space depending on case-specific 

settings. However in half the cases it is satisfactorily below 0.1. The diversity in these 

results is also due to the vocal control skills that participants developed to different 

levels within the free practicing time. These are more evident in the three following 

measurements that describe the average distance determined by instances of identical 

postures. The large distance in the parameters is in some cases due to poor vocal 

control skills, which is reflected in the considerable distances in the voice features 

space. In others cases, the non-bijective parameters-to-sound relationship may have 

contributed. For this reason we also display the average distances in the sonic space, 

which is generally lower and suggesting that the repeatability in the control of steady 

timbre is more precise than the parameters. This is verified also in the use-case (b) 

measurements, in which the repeatability of the vocal-gesture driven timbre dynamic 

variation is more critical, although this is not directly comparable because in this case 

we compute the average difference instead of the distance. For this measurement, the 

user-defined interface settings are responsible for the eventual difference between the 

averaged results in the sonic and parameter space. If we exclude participants 2, 3, and 

4, the subjects managed to obtain similar paths at least in the sonic space. These are 

far from being identical, but demonstrate the repeatability of vocal GC trends. 

Finally, the coverage of the sonic space, within 60 seconds of use, demonstrates that 

most users were able to cover approximately 3/4 of the GC output space, while for 

the resulting parameter space the low percentages are often due to tight conditions set 

by the participants on the DMI search modes, and also due to the high number of total 

combinations. However the space coverage measured across the whole free practicing 

sessions are higher, and close to 100% especially for the GC output. These are not 

included in the results because they are not derived from a systematic test and they 

may include unintentional input data. 
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The quantitative results of this evaluation, although dependent on interface 

configuration and participant vocal skills, demonstrate that the interface is in broad 

compliance with the design principles defined in this dissertation. While the interface 

use is challenging, especially compared to hand-based controllers, it provides 

sufficient reliable and repeatable sonic control. The data obtained in the use-cases 

measurements supports the user comments that practicing to master the skills is 

essential and it can improve the control precision in all the tasks considered above. 

7.4 Summary 

In this chapter we presented user studies for the evaluation of the interface developed 

within the framework of this dissertation, which integrates the main contribution of 

this thesis. We presented the major issues in evaluation and validation of musical 

instrument and interfaces, and we described our specific strategy and systematic 

protocol. We recruited ten experienced musicians for using and evaluating our novel 

interface who discussed their experience with the VCI4DMI in open-ended 

interviews. We derived qualitative evaluation from the analysis of the audio-video 

recorded interviews, while additional quantitative results were based on specific use-

cases measurements. We drew conclusions from the study of the resulting data 

identifying trends, patterns, and exceptions, which generally verified and confirmed 

the interface motivation, aim and principles. However participants also identified 

implementation improvements or suggested system modification, to address their 

perceptions of existing drawbacks. Finally we also detailed and discussed unexpected 

exceptions and conflicts in the findings, useful for future interface design.  
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Chapter 8  
 

Conclusion 
 

 

This thesis has presented a generative and adaptive mapping method to implement ad 

hoc vocally driven control for DMIs, which integrates the study of performer vocal 

characteristics and relationship between parameters and sound of a specific 

instrument. The expressivity of the interface is granted by customized machine 

learning algorithms that maximize the breadth of the explorable sonic space over a set 

of instrumental parameters and a given set of user vocal-gestures. The interface is 

generic and unsupervised since it does not set limitations on voice and DMI 

characteristics from which the system derives the mapping. Moreover the user 

interaction for training data preparation and system setup has been minimized. The 

results of this research work are integrated into an open-source functional prototype 

used to demonstrate the usability and advantages of the VCI4DMI for live 

performances. To conclude, we summarize the original contributions presented in this 

dissertation and we discuss their impact in a broader context. Then we discuss 

possible improvements of the system and future research directions in vocal control 

of musical instruments, advanced generative mapping techniques, and tools 

supporting users-centered interface implementation. The closing remarks include the 

author perspective and reflections on the system. 

8.1 Summary of contributions 

The key contributions made by this research include: 

• An unsupervised learning technique that extracts robust, independent, and 

continuous control signals, representative of the control intention expressed 

by voice timbre variation. The method is compatible with any phonation 

mode and optimizes the computation towards noise minimization and 

accentuation of the spatial spread of the gesture. 

• A novel method to implement ad-hoc multidimensional gestural controllers 

based on the output lattice of a self-organizing map, including a modified 

training procedure which ensures topology coherence between input and 

output spaces, and discontinuity-free output for continuous input trajectories. 
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Associating gestural extrema with vertices of the lattice we prevented 

application specific SOM pathologies. 

• A generic framework to analytically model the relationship between control 

parameters and perceptual sonic response of the instrument, based on a 

taxonomy that organizes DMIs for their input-output relationship, and 

specific analysis technique for each class. 

• A DMI few-to-many control strategy constructing an inverse map from the 

reduced-dimensionality perceptual sonic space to the parameter space, 

minimizing the losses in retrievable unique combinations, and addressing the 

non-bijective parameter-to-sound relationship with a trade off between 

parameters continuity and sonic space explorability. 

• A novel voice-to-instrument dual-layer generative mapping strategy, which 

converts instantaneous vocal timbre variations into instrumental sonic space 

trajectories for the control and modulation of an arbitrary number of real-

valued parameters. Neighborhood coherent reorganizations of the two spaces 

ensure the maximum overlap and explorability between vocal-gesture and 

instrument, while it linearizes the sonic response of the instrument. 

• An open-source proof-of-concept functional prototype of the VCI4DMI for 

user studies and live performances, as well as for exploration, modification, 

and further development of the proposed voice to instrument mapping 

methods. 

 

The resulting VCI4DMI interface is compliant with the design principles and 

requirements defined in section 2.3.1, and is a significant advancement of the state-

of-the-art in automated gesture mapping and vocal control of musical instruments, 

which include: interfaces integrability, indirect gestural acquisition, error-safe multi-

parametric control, consistent perceptual instrument response, low cognitive 

complexity, unsupervised and adaptive mapping generation, modular reconfigurable 

design, and runtime tuning features. 

8.2 Impact 

The work reported in this dissertation and the individual contributions have the 

potential for impact in several related areas. In the context of musical instruments, 

interface developers could adopt the Self Organizing Gesture method to implement 

gestural controllers regardless of the input modality and instrument mapping strategy 
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of their specific controller. This could provide their interfaces with a simultaneous 

and smooth control of continuous and independent signals that are learned, and 

therefore adapted, to the dynamics of specific gestural examples. This frees the 

designer from making prior assumptions about performer’s gestures, which may 

restrict the final interface use. Similarly interface designs can benefit from the 

proposed DMI control strategy based on a low dimensional representation of the 

sonic space, which can be abstracted from the vocal control context and integrated 

with any input modality. This allows designers to implement an adaptive few-to-

many mapping with minimal loss in the parameter space while maximizing the 

expressivity of the limited control dimensions of their specific interface. The open-

source prototype allows researchers, developers, and students to explore the novel 

techniques developed in this work, to hack the system for different application 

scenarios, and to further improve and develop the contribution of this dissertation. 

Musicians and performers searching for additional musical control dimensions 

will benefit from the adoption of the VCI4DMI, and as an alternative, they can 

integrate individual components of our system with their instrumental setup for 

performing with interfaces adapted towards the characteristics of the gesture or of the 

instrument’s sound. The default unsupervised mapping generation allows basic but 

effective use of the VCI4DMI regardless of the level of user expertise. Moreover the 

high configurability, the low cognitive complexity, and the sonic expressivity of the 

interface provide a low entry barrier for novice users, but a high ceiling for 

performers’ creative use and virtuoso skills development. 

The extraction of continuous, robust and independent control signals from the 

voice timbre can be applied to generic HCI interfaces to provide an alternative to the 

common speech recognition, which limits the interaction at the level of discrete 

verbal voice commands and which presents high latency. The proposed voice-

controlled interface provides low-latency and multidimensional control in real-time, 

and has the potential to extend the application domain of hands-free voice driven 

systems, especially when it requires the control of continuous quantities. 

8.3 Future work 

This work has raised a few questions, and identified areas of work that remain to be 

done before the ideal unsupervised framework for generating ad-hoc voice-controlled 

musical interfaces would be realized. From the study of these experiences we 

identified possible system improvements in terms of usability and functionality. 
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Moreover we discuss further research directions motivated by the outcomes and 

findings of this dissertation. 

8.3.1 System improvement 

The porting of the modules of the open-source prototype into a single programming 

environment would be a key development step to broaden VCI4DMI accessibility, 

especially for those users without programming expertise. Priority was given to 

algorithms research, sacrificing implementation elegance and further optimizations. 

Improvements in implementation could drastically reduce the system training time, 

and it may include a single multithreaded application for a more efficient VCI4DMI 

running on a single machine, plus a set of executable modules communicating via 

OSC for the network distribution of the interface components. Moreover a framework 

to reduce the analysis time for software plugin DMIs, generating output samples 

more frequently than that required by the real-time audio sampling rate could further 

improve the user experience in setting up the desired interface. 

We discussed the central role of the visual feedback, especially for the process of 

understanding, practicing, and eventually tuning the unsupervised mapping. We 

believe an overall improvement of the training outcome visualization of the data 

loaded in the VCI4DMI, including graphic enhancements and dynamic 

representations would be beneficial to the users, and might contribute especially to 

helping users understand 3D mappings and encouraging them to use it more. Further, 

providing interface feedback through vibro-tactile stimulators and optical head 

mounted displays, such as Google Glass, could further reduce the visual engagement 

required with screens or with the minimalistic wrist controller. 

The VCI4DMI timed energy gate and the use of a head-worn dynamic 

microphone with hyper-cardioid polar pattern were effective in reducing the 

detrimental effects that background noise can cause to degrade the voice to DMI 

parameters mapping, while the MIDI generator onset detector still presents some 

issues. Voice and noise separation were beyond the scope of this thesis and this 

problem could be addressed integrating existing real-time noise reduction or voice 

signal isolation techniques. In the typical use scenario the loudspeaker feedback is the 

dominant component of the background noise captured by the microphone. Thus the 

input of the interface system includes voice plus feedback, which is nothing but 

replicas of the mixing board output signal, filtered by the loudspeakers and room 

acoustic response. If we suppose that the mixing board output is known to the 

interface system, echo cancellation techniques (Gritton and Lin, 2003; Tandon, 
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Ahmad, and Swamy, 2004) could isolate the voice signal and reject the background 

noise. The energy gate could be replaced with voice-over-music detection 

(Lukashevich, Gruhne, and Dittmar, 2007; Rocamora and Herrera, 2007) or 

separation (Sofianos, Ariyaeeinia, and Polfreman, 2010; Usher, 2006) techniques. 

Furthermore, noise could be reduced using multiple microphones for source 

separation (Favrot, Erne, and Faller, 2006) and other highly directional microphone 

arrays based on receiver beamforming (Brandstein and Ward, 2001). 

Finally the prototype GUI refinement should include basic and advanced user 

modes, exposing a few simple options in the first case and granting full detailed 

access to the interface internal settings in the second. Moreover the development of 

an additional GUI module to manage vocal GC and DMI mapping data structures, 

and to organizing these in banks would facilitate performances preparation and 

maintenance of the VCI4DMI mappings user library. 

8.3.2 Research directions 

The challenges addressed in this thesis and the proposed solutions have in turn 

stimulated other questions and possible ways to overcome limitations of this research 

in the direction of vocal control of musical instruments, advanced generative mapping 

techniques, and tools supporting users-centered implementation of interfaces. 

The survey on related works showed that the gesture acquisition system for vocal 

interface could be something other than traditional microphones. In this context the 

high fidelity of the captured sound is not a primary required characteristic. Other 

solutions such as neck microphones, in mouth microphones, electroglottography, and 

mouth image tracking, are alternatives that provide intrinsic acoustic noise robustness 

but present their own drawbacks and are affected by other kinds of noise. We believe 

that composite gestural acquisition systems with an appropriate pre-processing stage 

should be explored and have the potential to mutually overcome the individual 

acquisition system shortcomings, in addition to controlling noise in the interface. 

However open challenges of this approach are in developing a strategy to merge the 

raw gestural data stream coming from different sensors, at different rates, with 

different latency, and in isolating the non-redundant information. 

We discarded the temporal information when analyzing the vocal-gestures, and 

we discussed how different vocal timbres could still trigger the interface. We also 

discussed the strong limitation in this context of traditional HMM for providing 

temporal modeling of the training data. A more complex HMM topology than the 

traditional left-to-right scheme could be effective, but this would require a much 
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larger amount of training data for accurate modeling. We tested embedding transition 

probabilities on the links of the GC SOM lattice for a minimal temporal modeling, 

and we observed limitations in free gestural space exploration determined by 

transitions with zero probability. This approach could be further explored, developing 

a separate model trained on temporal information of the gesture, which identifies the 

coherence of the live input with the training data. Problems to be addressed here are 

the high latency and the limited space explorability that this approach may introduce. 

The DMI parameter-to-sound analysis we introduced presents two limitations. 

Firstly, the user chooses the appropriate analysis mode and settings manually, and 

this affects the generated sonic space and mapping function. For a fully unsupervised 

mapping generation these choices should be automatic, and based on a quick 

preliminary DMI analysis, emulating the user decisional workflow. The open 

challenges here are the sound analysis strategy to classify the DMI into the proper 

category, and the development of a smart strategy to perform the right classification 

analyzing only a very small set of parameter combinations. Secondly, for sound 

processors the output sound perceptual analysis technique proposed in this 

dissertation is still basic and the topic is essentially poorly explored in existing works. 

The timbre modification and the related perceptual sonic difference determined by 

complex sound processors requires deeper user studies to develop a computational 

model first, and this topic presents plenty of opportunities for future research. 

Further user studies are needed to explore how unsupervised mappings fulfill 

user expectations implicitly expressed in the training data set, and how tuning the 

mapping algorithms might bring the results more in line with those expectations. For 

unsupervised ML, mapping accuracy measurement is not possible and actual 

verification needs to be user-centered. In the specific case of vocal control of DMIs, 

voice and instruments present respectively narrow and broad sound generation 

capability, theoretically unlimited for the latters. Ensuring that the interface has 

associated timbres between the two domains as the user intends may simply not be 

possible. Further research is necessary to investigate and explore this path, providing 

a more meaningful overlapping of these spaces without sacrificing the modularity and 

independency of the two interface components. 

Finally we believe that research in musical interfaces, regardless of the input 

modality and control purpose, would benefit from greater adaptability and 

personalization. This would be in line with a trend that is emerging in consumer 

programmable devices and applications such as mobile phones and web services that 

personalize the interface layout or the displayed information based on a large 

database of usage patterns and history. This process could be gradual and transparent 
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to the user, continuously collecting use data for offline reconfiguration of the 

interface response without disrupting the musical control skills already mastered. 

8.4 Closing remarks 

The VCI4DMI addresses issues and limitations of the current state-of-the-art in 

adaptive frameworks for musical interface design. The VCI4DMI empowers 

performers with novel musical control strategies that are easily accessible. The 

variety of types of musical control that the system can provide using different training 

settings and operational modes is designed to support performer creativity. The space 

of possibilities for voice-to-sound control is large and this in turn enables engaging 

performances with no hardware except for a microphone. However the VCI4DMI is a 

voice-to-instrument mapping toolkit that does not present any “out of the box” usable 

mapping, because it includes no prior knowledge about user’s voice and DMI. The 

resulting analysis and system procedure, although already minimized and central to 

generate customized mappings, may represent a barrier for performers more oriented 

to plug and play systems. From extensive use of the VCI4DMI we recognize that the 

effort required for memorizing the mappings and master vocal control skills is similar 

to the traditional acoustic instruments. Performances based exclusively on the 

VCI4DMI were particularly challenging because the vocal interface was continuously 

reconfigured while performing, requiring familiarization and memorization with 

multiple mappings. Although the audience feedback on the performances was very 

positive, we believe that the greatest advantage of the vocal musical control is within 

the context of concurrent use of multiple multimodal interfaces. We do not think that 

in the future more advanced and refined vocal interfaces can simply substitute for the 

traditional ones in either professional, amateur, or gaming use. The addition of the 

extra channel of control derived from the vocal-gesture enhances the existing 

virtuosity and creativity of performers. 

Musical ideas are realized into concrete sound through gestures compatible with 

specific instrument interfaces. For humans, especially musically untrained subjects, 

the vocal apparatus is the most natural and direct means to express sonic ideas. 

Although the timbre of the voice could be very different from any instrument’s 

timbre, the temporal progressions of energy, pitch, and timbre can be nuanced, 

intuitive and perceptually accurate. Voice-controlled musical interfaces shorten the 

brain-to-sound path, and this thesis represents a step towards systems that realize 

sonic intentions without the need for explicit gestural expressions.  



 

 221 

Bibliography 
 

ABRIL, C. R. 2007. I have a voice but I just can’t sing: a narrative investigation of 
singing and social anxiety. Music Education Research 9, 1–15. 

ADRIEN, J. M. 1991. Physical model synthesis: the missing link. In Representations of 
Musical Signals, De Poli, G., Piccialli, A. and Roads, C. (Eds.), pp. 269–297. 
MIT Press. 

ARFIB, D., COUTURIER, J. M., KESSOUS, L. AND VERFAILLE, V. 2002. Strategies of 
mapping between gesture data and synthesis model parameters using 
perceptual spaces. Organized Sound 7, 127–144. 

BELLMAN, R. 1972. Dynamic Programming. Princeton University Press. 

BENADE, A. H. 1990. Fundamentals of Musical Acoustics. Dover Publications. 

BENCINA, R. 2005. The metasurface: applying natural neighbour interpolation to two-
to-many mapping. In Proceedings of the 5th international conference on New 
Interfaces for Musical Expression, pp. 101–104. Vancouver, Canada. 

BERNARDINI, N., SERRA, X., LEMAN, M., WIDMER, G. AND DE POLI, G. 2007. A 
Roadmap for Sound and Music Computing. The S2S Consortium 
http://smcnetwork.org/roadmap (Accessed February 17, 2014). 

BEVILACQUA, F., MÜLLER, R. AND SCHNELL, N. 2005. MnM: a Max/MSP mapping 
toolbox. In Proceedings of the 5th international conference on New 
Interfaces for Musical Expression, pp. 85–88. Vancouver, Canada. 

BEVILACQUA, F., SCHNELL, N., RASAMIMANANA, N., ZAMBORLIN, B. AND GUÉDY, 
F. 2011. Online gesture analysis and control of audio processing. In Musical 
Robots and Interactive Multimodal Systems, Springer Tracts in Advanced 
Robotics, Solis, J. and Ng, K. (Eds.), pp. 127–142. Springer Berlin 
Heidelberg. 

BEVILACQUA, F., ZAMBORLIN, B., SYPNIEWSKI, A., SCHNELL, N., GUÉDY, F. AND 
RASAMIMANANA, N. 2010. Continuous realtime gesture following and 
recognition. In Gesture in Embodied Communication and Human-Computer 
Interaction, pp. 73–84. Springer. 

BILMES, J. A., LI, X., MALKIN, J., KILANSKI, K., WRIGHT, R., KIRCHHOFF, K., 
SUBRAMANYA, A., HARADA, S., A, J., DOWDEN, P. AND CHIZECK, H. 2005. 
The vocal joystick: a voice-based human-computer interface for individuals 
with motor impairments. In Human Language Technology conference and 
conference on Empirical Methods in Natural Language Processing, pp. 995–
1002. Vancouver, Canada. 

BLAINE, T. AND FELS, S. 2003. Contexts of collaborative musical experiences. In 
Proceedings of the 3rd international conference on New Interfaces for 
Musical Expression, pp. 129–134. Montreal, Canada. 



 

 222 

BONGERS, B. 2000. Physical interfaces in the electronic arts. Interaction theory and 
interfacing techniques for real-time performance. In Trends in Gestural 
Control of Music, Wanderley, M. M. and Battier, M. (Eds.), pp. 41–70. Paris, 
France: IRCAM Centre Pompidou. 

BOYCE, C. AND NEALE, P. 2006. Conducting In-Depth Interviews: A Guide for 
Designing and Conducting In-Depth Interviews for Evaluation Input. 
Pathfinder International. 

BRANDSTEIN, M. AND WARD, D. 2001. Microphone Arrays: Signal Processing 
Techniques and Applications. New York: Springer. 

BRANDTSEGG, U., SAUE, S. AND JOHANSEN, T. 2011. A modulation matrix for 
complex parameter sets. In Proceedings of the 11th international conference 
on New Interfaces for Musical Expression. Oslo, Norway. 

BRÜGGEN, M. 2001. Coloration and binaural decoloration in natural environments. 
Acta Acustica united with Acustica 87, 400–406. 

BRYMAN, A. 2012. Social Research Methods. Oxford University Press. 

BURGOYNE, J. A. AND MCADAMS, S. 2007. Non-linear scaling techniques for 
uncovering the perceptual dimensions of timbre. In Proceedings of the 2007 
International Computer Music Conferencevol. 1, pp. 73–76. Copenhagen, 
Denmark. 

BURGOYNE, J. A. AND MCADAMS, S. 2008. A meta-analysis of timbre perception 
using nonlinear extensions to CLASCAL. In Computer Music Modeling and 
Retrieval. Sense of Sounds, Kronland-Martinet, R., Ystad, S. and Jensen, K. 
(Eds.), pp. 181–202. Berlin, Heidelberg: Springer-Verlag. 

CADOZ, C., LUCIANI, A. AND FLORENS, J. L. 1993. CORDIS-ANIMA: A modeling 
and simulation system for sound and image synthesis. Computer Music 
Journal 17, 19–29. 

CADOZ, C. AND WANDERLEY, M. M. 2000. Gesture-music. In Trends in Gestural 
Control of Musicvol. 12, Wanderley, M. M. and Battier, M. (Eds.), p. 101. 
Paris, France: IRCAM Centre Pompidou. 

CAGE, J. 1937. The future of music: Credo. In Silence: Lectures and Writings, Cage, 
J. (Ed.), pp. 3–6. Wesleyan University Press, Published in 1961. 

CARAMIAUX, B. AND TANAKA, A. 2013. Machine learning of musical gestures. In 
Proceedings of the 13th international conference on New Interfaces for 
Musical Expression. Daejeon, Korea. 

CARAMIAUX, B., WANDERLEY, M. M. AND BEVILACQUA, F. 2012. Segmenting and 
parsing instrumentalists’ gestures. Journal of New Music Research 41, 13–
29. 

CARIOU, B. 1992. Design of an alternative controller from an industrial design 
perspective. In Proceedings of the 1992 International Computer Music 
Conference, pp. 366–367. San Francisco, US. 



 

 223 

CHADABE, J. 2002. The limitations of mapping as a structural descriptive in 
electronic instruments. In Proceedings of the 2nd international conference on 
New Interfaces for Musical Expression, pp. 1–5. Singapore. 

DE CHEVEIGNÉ, A. AND KAWAHARA, H. 2002. YIN, a fundamental frequency 
estimator for speech and music. The Journal of the Acoustical Society of 
America 111, 1917. 

CHOI, I., BARGAR, R. AND GOUDESEUNE, C. 1995. A manifold interface for a high 
dimensional control space. In Proceedings of the 2005 International 
Computer Music Conference, pp. 385–392. San Francisco, US. 

CHOWNING, J. 1971. The simulation of moving sound sources. Journal of the Audio 
Engineering Society 2–6. 

CHOWNING, J. 1973. The synthesis of complex audio spectra by means of frequency 
modulation. Journal of the Audio Engineering Society 21. 

CLARKE, E. F. 1988. Generative principles in music performance. In Generative 
processes in music, pp. 1–26. Clarendon Press. 

CLARK, J. AND YALLOP, C. 1995. An Introduction to Phonetics and Phonology. 
Wiley. 

COLLINS, N. 2009. Electronica. In The Oxford Handbook of Computer Music, Dean, 
R. T. (Ed.). Oxford University Press. 

COMON, P. 1994. Independent component analysis, a new concept? Signal Processing 
- Special issue on higher order statistics 36, 287–314. 

COOK, P. R. 1991. ‘Identification of control parameters in articulatory vocal tract 
model, with application to the synthesis of singing’. PhD Thesis, Stamford 
University. 

COOK, P. R. 2001. Principles for designing computer music controllers. In 
Proceedings of ACM Computer-Human Interaction Workshop on New 
Interfaces for Musical Expression, pp. 1–4. Seattle, USA. 

COOK, P. R. 2004. Remutualizing the musical instrument: co-design of synthesis 
algorithms and controllers. Journal of New Music Research 33, 315–320. 

COOK, P. R. 2009. Re-designing principles for computer music controllers: a case 
study of SqueezeVox Maggie. In Proceedings of the 9th international 
conference on New Interfaces for Musical Expression. Pittsburgh, US. 

DAHLSTEDT, P. 2001. Creating and exploring huge parameter spaces: interactive 
evolution as a tool for sound generation. In Proceedings of the 2001 
International Computer Music Conference, pp. 235–242. 

DAVIS, S. AND MERMELSTEIN, P. 1980. Comparison of parametric representations for 
monosyllabic word recognition in continuously spoken sentences. IEEE 
Transactions on Acoustics, Speech and Signal Processing 28, 357–366. 



 

 224 

DEACON, J. 2014. ‘The development of a software tool that employs vocals for the 
control of musical elements in a live performance’. BSc Thesis, University of 
Limerick. 

DEKEL, O., KESHET, J. AND SINGER, Y. 2005. An online algorithm for hierarchical 
phoneme classification. In Machine Learning for Multimodal Interaction, pp. 
146–158. Springer. 

VAN DEN BERG, J. 1958. Myoelastic-aerodynamic theory of voice production. 
Journal of Speech and Hearing Research 1, 227–44. 

VAN DER MAATEN, L. J. P., POSTMA, E. O. AND VAN DEN HERIK, H. J. 2009. 
Dimensionality reduction: a comparative review. Tilburg University 
Technical Report. 

DICTIONARY.COM n.d. electronic music. Dictionary.com Unabridged. 
http://dictionary.reference.com/browse/electronic music (Accessed December 
18, 2013). 

DIJKSTRA, E. W. 1959. A note on two problems in connexion with graphs. 
Numerische Mathematik 1, 269–271. 

DOBRIAN, C. AND KOPPELMAN, D. 2006. The ’E’ in NIME: musical expression with 
new computer interfaces. In Proceedings of the 6th international conference 
on New Interfaces for Musical Expression, p. 277. 

ELLINGSON, T. J. 1979. ‘The mandala of sound: concepts and sound structures in 
tibetan ritual music’. Ph.D. Thesis, University of Wisconsin at Madison. 

EMMERSON, S. 1994. ‘Live’ versus ‘real-time’. Contemporary Music Review 10, 95–
101. 

EMMERSON, S. 1998. Aural landscape: musical space. Organised Sound 3, 135–140. 

EPPS, J., SMITH, J. R. AND WOLFE, J. 1997. A novel instrument to measure acoustic 
resonances of the vocal tract during phonation. Measurement Science and 
Technology 8, 1112. 

ERICKSON, R. 1975. Sound Structure in Music. University of California Press. 

FANT, G. 1960. Acoustic Theory of Speech Production. The Hague: Mouton. 

FASCIANI, S. 2012. Voice features for control: a vocalist dependent method for noise 
measurement and independent signals computation. In Proceedings of the 
15th international conference on Digital Audio Effects. York, UK. 

FASCIANI, S. AND WYSE, L. 2012a. A voice interface for sound generators: adaptive 
and automatic mapping of gestures to sound. In Proceedings of the 12th 
international conference on New Interfaces for Musical Expression. Ann 
Arbor, US. 

FASCIANI, S. AND WYSE, L. 2012b. Adapting general purpose interfaces to synthesis 
engines using unsupervised dimensionality reduction techniques and inverse 
mapping from features to parameters. In Proceedings of the 2012 
International Computer Music Conference. Ljubljana, Slovenia. 



 

 225 

FASCIANI, S. AND WYSE, L. 2013a. A self-organizing gesture map for a voice-
controlled instrument interface. In Proceedings of the 13th international 
conference on New Interfaces for Musical Expression. Daejeon, Korea. 

FASCIANI, S. AND WYSE, L. 2013b. One at a time by voice: performing with the 
voice--controlled interface for digital musical instruments. In Proceedings of 
the NTU/ADM symposium on Sound and Interactivity 2013, extended for the 
Journal of Canadian Electroacoustic Community CEC, 16.2, 2014. 
Singapore. 

FAVREAU, E., FINGERHUT, M., KOECHLIN, O., POTACSEK, P., PUCKETTE, M. AND 
ROWE, R. 1986. Software developments for the 4X real-time system. In 
Proceedings of the 1986 International Computer Music Conference, pp. 43–
46. San Francisco, US. 

FAVROT, A., ERNE, M. AND FALLER, C. 2006. Improved cocktail-party processing. In 
Proceedings of the 9th International Conference on Digital Audio Effects. 
Montreal, Canada. 

FELS, S. 2000. Intimacy and embodiment: implications for art and technology. In 
Proceedings of the 2000 ACM workshops on Multimedia, pp. 13–16. 

FELS, S. 2004. Designing for intimacy: creating new interfaces for musical 
expression. Proceedings of the IEEE 92, 672–685. 

FIEBRINK, R. 2011. ‘Real-time human interaction with supervised learning algorithms 
for music composition and performance’. Ph.D. Thesis, Princeton University. 

FIEBRINK, R., COOK, P. R. AND TRUEMAN, D. 2009. Play-along mapping of musical 
controllers. In Proceedings of the 2009 International Computer Music 
Conference. Montreal, Canada. 

FOREMAN, D. 2013. The polyphonic me. 
http://www.ted.com/talks/beardyman_the_polyphonic_me.html (Accessed 
January 17, 2014). 

FRANCOISE, J., CARAMIAUX, B. AND BEVILACQUA, F. 2012. A hierarchical approach 
for the design of gesture-to-sound mappings. In Proceedings of the 9th Sound 
and Music Computing international conference. Copenhagen, Denmark. 

FYANS, A. C. AND GUREVICH, M. 2011. Perceptions of skill in performances with 
acoustic and electronic instruments. In Proceedings of the 11th international 
conference on New Interfaces for Musical Expression. Oslo, Norway. 

GAFFNEY, B. B. AND SMYTH, T. 2013. Acoustics-like dynamics in signal-based 
synthesis through parameter mapping. In Proceedings of the 10th Sound and 
Music Computing international conference. Stockholm, Sweden. 

GARNETT, G. E. AND GOUDESEUNE, C. 1999. Performance factors in control of high-
dimensional spaces. In Proceedings of the 1999 International Computer 
Music Conference, pp. 268–71. 

GELINECK, S. AND SERAFIN, S. 2009. A quantitative evaluation of the differences 
between knobs and sliders. In Proceedings of the 9th international 
conference on New Interfaces for Musical Expression. 



 

 226 

GILLIAN, N., KNAPP, R. B. AND O’MODHRAIN, S. 2011. A machine learning toolbox 
for musician computer interaction. In Proceedings of the 11th international 
conference on New Interfaces for Musical Expression. Oslo, Norway. 

GOLDSTEIN, J. L. 1973. An optimum processor theory for the central formation of the 
pitch of complex tones. The Journal of the Acoustical Society of America 54, 
1496–1516. 

GOODMAN, L. A. 1961. Snowball Sampling. The Annals of Mathematical Statistics 
32, 148–170. 

GRASSBERGER, P. AND PROCACCIA, I. 1983. Measuring the strangeness of strange 
attractors. Physica D: Nonlinear Phenomena 9, 189–208. 

GRETTON, A., FUKUMIZU, K. AND SRIPERUMBUDUR, B. K. 2009. Discussion of 
Brownian distance covariance. The Annals of Applied Statistics 3, 1285–
1294. 

GREY, J. M. 1977. Multidimensional perceptual scaling of musical timbres. Journal 
of the Acoustical Society of America 61, 1270–1277. 

GRILL, T. 2012. Constructing high-level perceptual audio descriptors for textural 
sounds. In Proceedings of the 9th Sound and Music Computing international 
conference. Copenhagen, Denmark. 

GRITTON, C. AND LIN, D. 2003. Echo cancellation algorithms. ASSP Magazine, IEEE 
1, 30–38. 

GROSSBERG, S. 1987. Competitive learning: from interactive activation to adaptive 
resonance. Cognitive Science 23–63. 

GUAN, H., FERIS, R. S. AND TURK, M. 2006. The isometric self-organizing map for 
3D hand pose estimation. In Proceedings of the 7th International Conference 
on Automatic Face and Gesture Recognition, pp. 263 –268. Southampton, 
UK. 

GUBRIUM, J. F. 2012. The SAGE Handbook of Interview Research: The Complexity of 
the Craft. SAGE Publications. 

GUEST, G., BUNCE, A. AND JOHNSON, L. 2006. How many interviews are enough? An 
experiment with data saturation and variability. Field Methods 18, 59–82. 

HARADA, S., WOBBROCK, J. O. AND LANDAY, J. A. 2007. Voicedraw: a hands-free 
voice-driven drawing application for people with motor impairments. In 
Proceedings of the 9th international ACM SIGACCESS conference on 
Computers and Accessibility, pp. 27–34. Orlando, US. 

HARADA, S., WOBBROCK, J. O., MALKIN, J., BILMES, J. A. AND LANDAY, J. A. 2009. 
Longitudinal study of people learning to use continuous voice-based cursor 
control. In Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems, pp. 347–356. Boston, US. 

HARRISON, S., TATAR, D. AND SENGERS, P. 2007. The three paradigms of HCI. In 
Proceedings of Alt. Chi. session at the SIGCHI conference on Human 
Factors in Computing Systems. San Jose, US. 



 

 227 

HAZAN, A. 2005. Performing expressive rhythms with billaboop voice-driven drum 
generator. In Proceedings of the 8th international conference on Digital 
Audio Effects. Madrid, Spain. 

VON HELMHOLTZ, H. L. F. 1954. On the Sensations of Tone. New York: Dover 
Publications (original work published in 1877). 

HENRICH, N. 2006. Mirroring the voice from garcia to the present day: some insights 
into singing voice registers. Logopedics, Phoniatrics, Vocology 31, 3–14. 

HERMANSKY, H. 1990. Perceptual linear predictive (PLP) analysis of speech. The 
Journal of the Acoustical Society of America 87, 1738–1752. 

HERMANSKY, H. AND MORGAN, N. 1994. RASTA processing of speech. IEEE 
Transactions on Speech and Audio Processing 2, 578–589. 

HERMANSKY, H., MORGAN, N., BAYYA, A. AND KOHN, P. 1991. Compensation for 
the effect of the communication channel in auditory-like analysis of speech 
(RASTA-PLP). In Proceedings of the 2nd European Conference on Speech 
Communication and Technology. Genova, Italy. 

HIGHHOUSE, S. AND GILLESPIE, J. Z. 2009. Do samples really matter that much? In 
Statistical and Methodological Myths and Urban Legends: Doctrine, Verity 
and Fable in Organizational and Social Sciences, Lance, C. E. and 
Vandenberg, R. J. (Eds.), pp. 249–268. New York, NY, USA: Routledge. 

HILLER, L. AND RUIZ, P. 1971. Synthesizing musical sounds by solving the wave 
equation for vibrating objects: part I. Journal of the Audio Engineering 
Society 19, 462—470. 

VON HORNBOSTEL, E. M. AND SACHS, C. 1914. Hornbostel–Sachs. In Zeitschrift für 
Ethnologievol. 46, pp. 553–90. Braunschweig, A. Limbach [etc.]. 

HOUSE, B., MALKIN, J. AND BILMES, J. 2009. The VoiceBot: a voice controlled robot 
arm. In Proceedings of the 27th international conference on Human Factors 
in Computing Systems, pp. 183–192. Boston, US. 

HUNT, A. AND KIRK, R. 2000. Mapping strategies for musical performance. In Trends 
in Gestural Control of Musicvol. 21, Wanderley, M. M. and Battier, M. 
(Eds.), pp. 231–258. Paris, France: IRCAM Centre Pompidou. 

HUNT, A. AND WANDERLEY, M. M. 2003. Mapping performer parameters to 
synthesis engines. Organised Sound 7, 97–108. 

HUNT, A., WANDERLEY, M. M. AND KIRK, R. 2000. Towards a model for 
instrumental mapping in expert musical interaction. In Proceedings of the 
2000 International Computer Music Conference, pp. 209–212. Berlin, 
Germany. 

HYVARINEN, A. 1999. Fast and robust fixed-point algorithms for independent 
component analysis. IEEE Transactions on Neural Networks 10, 626–634. 

IGARASHI, T. AND HUGHES, J. F. 2001. Voice as sound: using non-verbal voice input 
for interactive control. In Proceedings of the 14th annual ACM symposium on 
User Interface Software and Technology, pp. 155–156. Orlando, US. 



 

 228 

ARP INSTRUMENTS, I. 1976. For keyboard players who need an extra hand. The ARP 
Sequencer. Contemporary Keyboard. 

ITAKURA, F. AND SAITO, S. 1967. Analysis-synthesis transmission system based on 
maximum likelihood spectrum estimation. In Proceedings of the Convention 
of the Acoustic Society of Japanvol. 2-3-1, pp. 231–232 (in Japanese). 

JACOB, R. J. K., SIBERT, L. E., MCFARLANE, D. C. AND MULLEN,JR., M. P. 1994. 
Integrality and separability of input devices. ACM Transactions on 
Computer-Human Interaction 1, 3–26. 

JANER, J. 2005a. Voice-controlled plucked bass guitar through two synthesis 
techniques. In Proceedings of the 5th international conference on New 
Interfaces for Musical Expression, pp. 132–135. Vancouver, Canada. 

JANER, J. 2005b. Feature extraction for voice-driven synthesis. In Proceedings of the 
118th Audio Engineering Society convention. Barcelona, Spain. 

JANER, J. 2008. ‘Singing-driven interfaces for sound synthesizers’. PhD Thesis, 
Universitat Pompeu Fabra, Barcelona. 

JANER, J. AND DE BOER, M. 2008. Extending voice-driven synthesis to audio 
mosaicing. In Proceedings of the 5th Sound and Music Computing 
international conferencevol. 4. Berlin, Germany. 

JEHAN, T. 2001. ‘Perceptual synthesis engine: an audio-driven timbre generator’. 
Master Thesis, Massachusetts Institute of Technology. 

JEHAN, T. AND SCHONER, B. 2001. An audio-driven perceptually meaningful timbre 
synthesizer. In Proceedings of the 2001 International Computer Music 
Conference. Havana, Cuba. 

JOHNSON, K. 2008. Speaker Normalization in Speech Perception. In The Handbook of 
Speech Perception, Pisoni, D. and Remez, R. (Eds.), p. 363. Wiley-
Blackwell. 

JORDÀ, S. 2004a. Digital instruments and players: part I - efficiency and 
apprenticeship. In Proceedings of the 4th international conference on New 
Interfaces for Musical Expression, pp. 59–63. Hamamatsu, Japan. 

JORDÀ, S. 2004b. Digital instruments and players: part II – diversity, freedom and 
control. In Proceedings of the 2004 International Computer Music 
Conference, pp. 706–710. Miami, US. 

JORDÀ, S., KALTENBRUNNER, M., GEIGER, G. AND BENCINA, R. 2005. The 
reacTable*. In Proceedings of the 2005 International Computer Music 
Conference. Barcelona, Spain. 

KAPUR, A., BENNING, M. AND TZANETAKIS, G. 2004. Query-by-beat-boxing: music 
retrieval for the dj. In Proceedings of the International Conference on Music 
Information Retrieval, pp. 170–177. Barcelona, Spain. 

KARTOMI, M. J. 1990. On Concepts and Classifications of Musical Instruments. 
Chicago: University of Chicago Press, Chicago studies in ethnomusicology. 



 

 229 

KEISLAR, D. 2009. A Historical View of Computer Music Technology. In The Oxford 
Handbook of Computer Music, Dean, R. T. (Ed.). Oxford University Press. 

KESTIAN, A. P. AND SMYTH, T. 2010. Real-time estimation of the vocal tract shape 
for musical control. In Proceedings of the 7th Sound and Music Computing 
international conference. Barcelona, Spain. 

KIEFER, C., COLLINS, N. AND FITZPATRICK, G. 2008. HCI methodology for 
evaluating musical controllers: a case study. In Proceedings of the 8th 
international conference on New Interfaces for Musical Expression. 

KIVILUOTO, K. 1996. Topology preservation in self-organizing maps. In Proceedings 
of the IEEE International Conference on Neural Networksvol. 1, pp. 294 –
299. Piscataway, US. 

KOHONEN, T. 1982. Self-organized formation of topologically correct feature maps. 
Biological Cybernetics 43, 59–69. 

KÖNIG, S. 2006. scrambled?HaCkZ! Paris, France. 

KVALE, S. 1996. InterViews: An Introduction to Qualitative Research Interviewing. 
SAGE Publications. 

KVALE, S. AND BRINKMANN, S. 2008. InterViews: Learning the Craft of Qualitative 
Research Interviewing. Second Edition. SAGE Publications, Inc. 

KVIFTE, T. AND JENSENIUS, A. R. 2006. Towards a coherent terminology and model 
of instrument description and design. In Proceedings of the 6th international 
conference on New Interfaces for Musical Expression, pp. 220–225. Paris, 
France. 

LALLEMAND, I. AND SCHWARZ, D. 2011. Interaction-optimized sound database 
representation. In Proceedings of 14th International Conference on Digital 
Audio Effects. Paris, France. 

LAVER, J. 1980. The Phonetic Description of Voice Quality. Cambridge University 
Press. 

LAZIER, A. AND COOK, P. R. 2003. Mosievius: feature driven interactive audio 
mosaicing. In Proceedings of the 7th international conference on Digital 
Audio Effects. Napoli, Italy. 

LAZZARINI, V. AND TIMONEY, J. 2009. New methods of formant analysis-synthesis 
for musical applications. In Proceedings of the 2009 International Computer 
Music Conference. Montreal, Canada. 

LECLUSE, F. L. E., BROCAAR, M. P. AND VERSCHURRE, J. 1975. The 
electoglottography and its relation to glottal activity. Fol Phoniatr 27, 215–
24. 

LEE, M. AND WESSEL, D. 1992. Connectionist models for real-time control of 
synthesis and compositional algorithms. In Proceedings of the 1992 
International Computer Music Conference. San Jose, CA. 



 

 230 

LEVENBERG, K. 1944. A method for the solution of certain non-linear problems in 
least squares. Quarterly Journal of Applied Mathmatics II, 164–168. 

LEVINA, E. AND BICKEL, P. J. 2004. Maximum likelihood estimation of intrinsic 
dimension. Advances in Neural Information Processing Systems 17, 777–
784. 

LEVITIN, D. J., MCADAMS, S. AND ADAMS, R. L. 2002. Control parameters for 
musical instruments: a foundation for new mappings of gesture to sound. 
Organized Sound 7, 171–189. 

LIKERT, R. 1932. A technique for the measurement of attitudes. Archives of 
Psychology 22 140, 55. 

LINDSTRØM, H. P. 2007. Lindstrøm: Beyond space disco. 
http://www.residentadvisor.net/feature.aspx?805 (Accessed January 7, 2014). 

LOSCOS, A. AND AUSSENAC, T. 2005. The Wahwactor: a voice controlled wah-wah 
pedal. In Proceedings of the 5th international conference on New Interfaces 
for Musical Expression, pp. 172–175. Vancouver, Canada. 

LOSCOS, A., CANO, P. AND BONADA, J. 1999. Low-delay singing voice alignment to 
text. In Proceesings of the 1999 International Computer Music Conference. 
Beijing, China. 

LOSCOS, A., CANO, P. AND BONADA, J. 2005. Larynxophone: using voice as a wind 
controller. In Proceedings of the 2005 International Computer Music 
Conference. Barcelona, Spain. 

LUKASHEVICH, H., GRUHNE, M. AND DITTMAR, C. 2007. Effective singing voice 
detection in popular music using arma filtering. In Workshop on Digital 
Audio Effects. Bordeaux, France. 

LYONS, M. J. AND FELS, S. 2012. Advances in new interfaces for musical expression. 
In Proceedings of SIGGRAPH Asia 2012 Courses. Singapore. 

LYONS, M. J., HAEHNEL, M. AND TETSUTANI, N. 2003. Designing, playing, and 
performing with a vision-based mouth interface. In Proceedings of the 3rd 
international conference on New Interfaces for Musical Expression, pp. 116–
121. Montreal, Canada. 

VAN DER MAATEN, L. AND HINTON, G. 2008. Visualizing data using t-SNE. Journal 
of Machine Learning Research 9. 

MACHOVER, T. 2002. Instruments, interactivity, and inevitability. In Proceedings of 
the 2nd international conference on New Interfaces for Musical Expression. 
Dublin, Ireland. 

MALLOCH, J., BIRNBAUM, D., SINYOR, E. AND WANDERLEY, M. M. 2006. Towards a 
new conceptual framework for digital musical instruments. In Proceedings of 
the 9th international conference on Digital Audio Effects, pp. 49–52. 
Montreal, Canada. 

MARKEL, J. 1972. Digital inverse filtering - a new tool for formant trajectory 
estimation. IEEE Transactions on Audio and Electroacoustics 20, 129–137. 



 

 231 

MARQUARDT, D. W. 1963. An algorithm for least-squares estimation of nonlinear 
parameters. Journal of the Society for Industrial and Applied Mathematics 
11, 431–441. 

MARQUEZ-BORBON, A., GUREVICH, M., FYANS, A. C. AND STAPLETON, P. 2011. 
Designing digital musical interactions in experimental contexts. In 
Proceedings of the 11th international conference on New Interfaces for 
Musical Expressionvol. 16, p. 21. Oslo, Norway. 

MARTIN, P. Y. AND TURNER, B. A. 1986. Grounded theory and organizational 
research. The Journal of Applied Behavioral Science 22, 141–157. 

MATHEWS, M. V. 1963. The digital computer as a musical instrument. Science 142, 
553–557. 

MATHEWS, M. V. AND GUTTMAN, N. 1959. Generation of music by a digital 
computer. In Proceedings of the 3rd International Congress on Acoustics. 
Amsterdam, Netherlands. 

MAY, E. 1983. Musics of Many Cultures: An Introduction. University of California 
Press. 

MCADAMS, S. AND BERGMAN, A. 1979. Hearing musical streams. Computer Music 
Journal 3, 26–43, 60. 

MCADAMS, S. AND CUNIBLE, J. C. 1992. Perception of timbral analogies. Royal 
Society of London Philosophical Transactions 336, 383–389. 

MCCANDLESS, S. 1974. An algorithm for automatic formant extraction using linear 
prediction spectra. IEEE Transactions on Acoustics, Speech and Signal 
Processing 22, 135–141. 

MCGURK, H. AND MACDONALD, J. 1976. Hearing lips and seeing voices. Nature 264, 
746–748. 

MCLEAN, A., SHIN, E. AND NG, K. C. 2013. Paralinguistic microphone. In 
Proceedings of the 13th international conference on New Interfaces for 
Musical Expression. Daejeon, Korea. 

MCPHERSON, A. 2012. TouchKeys: capacitive multi-touch sensing on a physical 
keyboard. In Proceedings of the 12th international conference on New 
Interfaces for Musical Expression. Ann Arbor, US. 

MCPHERSON, A. 2013. Portable measurement and mapping of continuous piano 
gesture. In Proceedings of 13th international conference on New Interfaces 
for Musical Expression. Daejeon, Korea. 

MEHRABANI, M. AND HANSEN, J. 2013. A study of speaker dependent formant space 
variations in karaoke singing. In Proceedings of the 2013 Stockholm Music 
Acoustics Conference. Stockholm, Sweden. 

MEHTA, D. D., RUDOY, D. AND WOLFE, P. J. 2012. Kalman-based autoregressive 
moving average modeling and inference for formant and antiformant 
tracking. The Journal of the Acoustical Society of America 132, 1732. 



 

 232 

MENZIES, D. 2002. Composing instrument control dynamics. Organised Sound 7, 
255–266. 

MEYER, L. B. 1956. Emotion and Meaning in Music. University of Chicago Press. 

MIRANDA, E. R. AND WANDERLEY, M. M. 2006. New digital musical instruments: 
control and interaction beyond the keyboard. A-R Editions, Inc. 

MOMENI, A. AND WESSEL, D. 2003. Characterizing and controlling musical material 
intuitively with geometric models. In Proceedings of the 3rd international 
conference on New interfaces for Musical Expression, pp. 54–62. Montreal, 
Canada. 

MONSON, B. B. 2011. ‘High-frequency energy in singing and speech’. Ph.D. Thesis, 
University of Arizona. 

MOORE, B. C. J. AND GLASBERG, B. R. 1983. Suggested formulae for calculating 
auditory‐filter bandwidths and excitation patterns. The Journal of the 
Acoustical Society of America 74, 750–753. 

MOORE, F. R. 1988. The dysfunctions of MIDI. Computer Music Journal 12, 19–28. 

MORRISON, D. AND ADRIEN, J. M. 1993. MOSAIC: A framework for modal 
synthesis. Computer Music Journal 17, 45–56. 

MULDER, A. 2000. Towards a choice of gestural constraints for instrumental 
performers. In Trends in Gestural Control of Music, Wanderley, M. M. and 
Battier, M. (Eds.), pp. 315–335. Paris, France: IRCAM Centre Pompidou. 

MUSTAFA, K. AND BRUCE, I. C. 2006. Robust formant tracking for continuous speech 
with speaker variability. IEEE Transactions on Audio, Speech, and Language 
Processing 14, 435 – 444. 

NARMOUR, E. 1992. The Analysis and Cognition of Melodic Complexity: The 
Implication-Realization Model. University of Chicago Press. 

NATH, A. R. AND BEAUCHAMP, M. S. 2012. A neural basis for interindividual 
differences in the McGurk effect, a multisensory speech illusion. 
NeuroImage 59, 781–787. 

NESS, S. R. AND TZANETAKIS, G. 2009. SOMBA: Multiuser Music Creation Using 
Self-Organized Maps and Motion Tracking. In Proceedings of the 2009 
International Computer Music Conference. 

NGUYEN, H., BURKARDT, J., GUNZBURGER, M., JU, L. AND SAKA, Y. 2009. 
Constrained CVT meshes and a comparison of triangular mesh generators. 
Computational Geometry 42, 1–19. 

NIELSEN, J. 1993. Iterative user-interface design. Computer 26, 32–41. 

NORMAN, D. A. 1988. The Psychology Of Everyday Things. Basic Books. 

NORMAN, D. A. AND DRAPER, S. W. 1986. User Centered System Design: New 
Perspectives on Human-computer Interaction. L. Erlbaum Associates Inc. 



 

 233 

VAN NORT, D. 2009. ‘Modular and adaptive control of sound processing’. Ph.D. 
Thesis. 

VAN NORT, D. AND WANDERLEY, M. M. 2007. Control strategies for navigation of 
complex sonic spaces. In Proceedings of the 7th international conference on 
New Interfaces for Musical Expression, pp. 379–382. New York, US: ACM. 

VAN NORT, D., WANDERLEY, M. M. AND DEPALLE, P. 2004. On the choice of 
mappings based on geometric properties. In Proceedings of the 4th 
international conference on New Interfaces for Musical Expression, pp. 87–
91. Hamamatsu, Japan. 

ODOWICHUK, G. AND TZANETAKIS, G. 2012. Browsing music and sound using 
gestures in a self-organized 3D space. In Proceedings of the 2012 
International Computer Music Conference. Ljubljana, Slovenia. 

OGDEN, J. AND LO, J. 2012. How meaningful are data from Likert scales? An 
evaluation of how ratings are made and the role of the response shift in the 
socially disadvantaged. Journal of Health Psychology 17, 350–361. 

O’HALLORAN, K., PODLASOV, A., CHUA, A. AND E, M. K. L. 2012. Interactive 
software for multimodal analysis. Visual Communication 11, 363–381. 

O’HALLORAN, K., TAN, S. AND E, M. K. L. 2014. Multimodal analytics: software and 
visualization techniques for analyzing and interpreting multimodal data. In 
The Routledge Handbook of Multimodal Analysis, Jewitt, C. (Ed.). 
Routledge. 

OHM, G. 1843. Annalen der Physik 513. 

OLIVER, W., YU, J. AND METOIS, E. 1997. The singing tree: design of an interactive 
musical interface. In Proceedings of the 2nd conference on Designing 
interactive systems: processes, practices, methods, and techniques, p. 264. 
Amsterdam, Netherlands. 

O’MODHRAIN, S. 2011. A framework for the evaluation of digital musical 
instruments. Computer Music Journal 35, 28–42. 

ORIO, N. 1997. A gesture interface controlled by the oral cavity. In Proceedings of 
the 1997 International Computer Music Conference. Thessaloniki, Greece. 

ORIO, N. 2006. Music Retrieval: A Tutorial and Review. Now Publishers Inc. 

ORIO, N., SCHNELL, N. AND WANDERLEY, M. M. 2001. Input devices for musical 
expression: borrowing tools from HCI. In Proceedings of ACM Computer-
Human Interaction Workshop on New Interfaces for Musical Expression, pp. 
1–4. Seattle, USA. 

O’SHAUGHNESSY, D. 2003. Interacting with computers by voice: automatic speech 
recognition and synthesis. Proceedings of the IEEE 91, 1272–1305. 

PARADISO, J. A. 2002. Electronic music: new ways to play. Spectrum, IEEE 34, 18–
30. 



 

 234 

PARADISO, J. A. AND O’MODHRAIN, S. 2003. Current trends in electronic music 
interfaces. Guest editors’ introduction. Journal of New Music Research 32, 
345–349. 

PERSSON, P.-O. AND STRANG, G. 2004. A simple mesh generator in MATLAB. SIAM 
Review 46, 329–345. 

PINCH, T. J. AND TROCCO, F. 2002. Analog Days: The Invention and Impact of the 
Moog Synthesizer. Harvard University Press. 

PLOMP, R. 1976. Aspects of Tone Sensation: A Psychophysical Study. Academic 
Press. 

PLOMP, R. AND STEENEKEN, J. M. 1971. Pitch versus timbre. In Proceedings of the 
7th International Congress of Acoustical Societyvol. 3, pp. 377–380. 
Budapest, Hungary. 

POSCIC, A. AND KREKOVIC, C. 2013. Controlling a sound synthesizer using timbral 
attributes. In Proceedings of the 10th Sound and Music Computing 
international conference. Stockholm, Sweden. 

POUPYREV, I., LYONS, M. J., FELS, S. AND BLAINE, T. 2001. New interfaces for 
musical expression. In Proceedings of CHI 2001, Extended Abstracts, pp. pp. 
491–492. New York, US: ACM. 

PRESSING, J. 1990. Cybernetic issues in interactive performance systems. Computer 
Music Journal 14, 12. 

PUCKETTE, M. 1986. Interprocess communication and timing in real-time computer 
music performance. In Proceedings of the 1986 International Computer 
Music Conference, pp. 43–46. Den Haag, Netherlands. 

PUCKETTE, M. 1988. The Patcher. In Proceedings of the 1988 International 
Computer Music Conference, pp. 420–429. Kologne, Germany. 

PUCKETTE, M. 1991. Something digital. Computer Music Journal 15, 65–69. 

PUCKETTE, M. 1996. Pure Data. In Proceedings of the 1996 International Computer 
Music Conference, pp. 224–227. Hong Kong, China. 

PUCKETTE, M. 2004. Low-dimensional parameter mapping using spectral envelopes. 
In Proceedings of the 2004 International Computer Music Conference. 
Miami, US. 

PUCKETTE, M. AND APEL, T. 1998. Real-time audio analysis tools for Pd and MSP. In 
Proceedings of the 1998 International Computer Music Conference. Ann 
Arbor, US. 

PUCKETTE, M. AND LIPPE, C. 1994. Getting the acoustic parameters from a live 
performance. In 3rd International Conference for Music Perception and 
Cognition, pp. 328–333. Liège, Belgium. 

QUATIERI, T. F. 2008. Discrete-Time Speech Signal Processing: Principles and 
Practice. Pearson Education. 

RABINER, L. R. 1978. Digital Processing of Speech Signals. Prentice Hall. 



 

 235 

RABINER, L. R. 1989. A tutorial on hidden markov models and selected applications 
in speech recognition. Proceedings of the IEEE 77, 257–286. 

RABINER, L. R. AND JUANG, B.-H. 1993. Fundamentals of Speech Recognition. 
Pearson Education. 

RAMAKRISHNAN, C., FREEMAN, J. AND VARNIK, K. 2004. The architecture of auracle: 
a real-time, distributed, collaborative instrument. In Proceedings of the 4th 
conference on New interfaces for Musical Expression, pp. 100–103. 
Hamamatsu, Japan. 

RAO, C. R. 1948. The utilization of multiple measurements in problems of biological 
classification. Journal of the Royal Statistical Society 10, 159–203. 

RASMUSSEN, J. 1986. Information Processing and Human-Machine Interaction: An 
Approach to Cognitive Engineering. Elsevier Science Inc. 

RESNICK, M., MYERS, B., NAKAKOJI, K., SHNEIDERMAN, B., PAUSCH, R., SELKER, T. 
AND EISENBERG, M. 2005. Design principles for tools to support creative 
thinking. In Proceedings of the NSF Workshop on Creativity Support Tools, 
pp. 25–36. Washington, US. 

RISSET, J. C. 1978a. Paradoxes De Hauteur. IRCAM. 

RISSET, J. C. 1978b. Hauteur et Timbre des Sons. IRCAM. 

RISSET, J. C. AND WESSEL, D. 1999. Exploration of timbre by analysis and synthesis. 
The psychology of music 113–169. 

ROCAMORA, M. AND HERRERA, P. 2007. Comparing audio descriptors for singing 
voice detection in music audio files. In Proceedings of the 11th Brazilian 
Symposium on Computer Musicvol. 26, p. 27. Sao Paulo, Brazil. 

ROSENBLUM, L. D. AND SALDAÑA, H. M. 1996. An audiovisual test of kinematic 
primitives for visual speech perception. Journal of Experimental Psychology. 
Human Perception and Performance 22, 318–331. 

ROTHBAUER, P. 2008. Triangulation. In The SAGE Encyclopedia of Qualitative 
Research Methods, Given, L. (Ed.), pp. 892–894. Sage Publications. 

ROUSSEEUW, P. J. 1987. Silhouettes: a graphical aid to the interpretation and 
validation of cluster analysis. Journal of Computational and Applied 
Mathematics 20, 53–65. 

ROVAN, J. B., WANDERLEY, M. M., DUBNOV, S. AND DEPALLE, P. 1997. Instrumental 
gestural mapping strategies as expressivity determinants in computer music 
performance. In Proceedings of Kansei - The Technology of Emotions 
Workshop. Genova, Italy. 

ROWEIS, S. T. AND SAUL, L. K. 2000. Nonlinear dimensionality reduction by locally 
linear embedding. Science 290, 2323–2326. 

ROWE, R. 1993. Interactive Music Systems: Machine Listening and Composing. MIT 
Press. 



 

 236 

ROWE, R. 1995. Incrementally improving interactive music systems. Contemporary 
Music Review 13, 47–62. 

RYAN, J. 1992. Effort and Expression: Some Notes on Instrument Design at STEIM. 
In Proceedings of the 1992 International Computer Music Conference, 
Strange, A. (Ed.). 

SACHS, C. 1940. The history of musical instruments. Dover Publications. 

SANDERSON, C. AND PALIWAL, K. K. 1997. Effect of different sampling rates and 
feature vector sizes on speech recognition performance. In TENCON’97. 
IEEE Region 10 Annual Conference. Speech and Image Technologies for 
Computing and Telecommunications., Proceedings of IEEEvol. 1, pp. 161–
164. 

SCHAFER, R. W. AND RABINER, L. R. 1970. System for automatic formant analysis of 
voiced speech. The Journal of the Acoustical Society of America 47, 634–48. 

SCHLOSS, W. A. 2003. Using contemporary technology in live performance: The 
dilemma of the performer. Journal of New Music Research 32, 239–242. 

SCHNELL, N., BORGHESI, R., SCHWARZ, D., BEVILACQUA, F. AND MULLER, R. 2005. 
FTM - Complex Data Structure for Max. In Proceedings of the 2005 
International Computer Music Conference. Barcelona, Spain. 

SCHNELL, N., CIFUENTES, M. A. S. AND LAMBERT, J. P. 2010. First steps in relaxed 
real-time typo-morphological audio analysis/synthesis. In Proceeding of the 
7th Sound and Music Computing international conference. Barcelona, Spain. 

SCHNELL, N. AND SCHWARZ, D. 2005. Gabor, multi-representation real-time 
analysis/synthesis. In Proceedings of the 8th international conference on 
Digital Audio Effects. Madrid, Spain. 

SCHOENBERG, A. 1922. Harmonielehre. Universal-edition. 

SCHOUTEN, J. F. 1968. The perception of timbre. In Reports of the 6th International 
Congress on Acoustics, pp. 35–44, 90. Tokyo, Japan. 

SCHWARZ, D. 2000. A system for data-driven concatenative sound synthesis. In 
Proceedings of the 3rd international conference on Digital Audio Effects. 
Verona, Italy. 

SCHWARZ, D. 2006. Concatenative sound synthesis: the early years. Journal of New 
Music Research 35, 3–22. 

SCHWARZ, D. 2012. The sound space as musical instrument: playing corpus-based 
concatenative synthesis. In Proceedings of the 12th international conference 
on New Interfaces for Musical Expression. Ann Arbor, US. 

SCHWARZ, D., BELLER, G., VERBRUGGHE, B. AND BRITTON, S. 2006. Real-time 
corpus-based concatenative synthesis with catart. In Proceedings of the 9th 
international conference on Digital Audio Effects, pp. 279–282. Montreal, 
Canada. 

SEBER, G. A. F. 1984. Multivariate Observations. John Wiley & Sons, Inc. 



 

 237 

SELFRIDGE, O. G. 1959. Pandemonium: a paradigm for learning. In Proceedings of 
the Symposium on Mechanisation of Thought Processes, pp. 511–529. 
London, UK. 

SENEFF, S. 1988. A joint synchrony/mean-rate model of auditory speech processing. 
Journal of Phonetics 16, 55–76. 

SHAWE-TAYLOR, J. AND CRISTIANINI, N. 2004. Kernel Methods for Pattern Analysis. 
Cambridge University Press. 

SHNEIDERMAN, B. AND PLAISANT, C. 2010. Designing the User Interface: Strategies 
for Effective Human-Computer Interaction. Addison-Wesley. 

SMITH, B. D. AND GARNETT, G. E. 2011. The self-supervising machine. In 
Proceedings of the 11th international conference on New Interfaces for 
Musical Expression. Oslo, Norway. 

SMITH, B. D. AND GARNETT, G. E. 2012. Unsupervised play: machine learning toolkit 
for max. In Proceedings of the 12th international conference on New 
Interfaces for Musical Expression. Ann Arbor, US. 

SMITH, J. O. 1991. Viewpoints on the history of digital synthesis. In Proceedings of 
the 1991 International Computer Music Conference. Montreal, Canada. 

SMITH, J. O. 1992. Physical modeling using digital waveguides. Computer Music 
Journal 16, 74–91. 

SNYDER, J. AND MCPHERSON, A. 2012. The JD-1: an Implementation of a hybrid 
keyboard/sequencer controller for analog synthesizers. In Proceedings of the 
12th international conference on New Interfaces for Musical Expression. 
Ann Arbor, US. 

SOFIANOS, S., ARIYAEEINIA, A. AND POLFREMAN, R. 2010. Singing voice separation 
based on non-vocal independent component subtraction and amplitude 
aiscrimination. In Proceedings of the 13th international conference on 
Digital Audio Effects. Graz, Austria. 

STEVENS, K. 1971. Sources of inter- and intra-speaker variability in the acoustic 
properties of speech sounds. In Proceedings of the 7th International 
Congress on Phonetic Sciences, pp. 206–232. Montreal, Canada. 

STEVENS, S. S. 1936. A scale for the measurement of a psychological magnitude: 
loudness. Psychological Review 43, 405–416. 

STOWELL, D. 2008. Characteristics of the beatboxing vocal style. Queen Mary 
University of London. 

STOWELL, D. 2010. ‘Making music through real-time voice timbre analysis: machine 
learning and timbral control’. Ph.D. Thesis, Queen Mary University of 
London. 

STOWELL, D. AND PLUMBLEY, M. D. 2008. Robustness and independence of voice 
timbre features under live performance acoustic degradations. In Proceedings 
of the 11th international conference on Digital Audio Effects. Espoo, Finland. 



 

 238 

STOWELL, D. AND PLUMBLEY, M. D. 2010. Timbre remapping through a regression-
tree technique. In Proceedings of the 7th Sound and Music Computing 
international conference. Barcelona, Spain. 

SUMMERFIELD, Q. AND ASSMANN, P. F. 1989. Auditory enhancement and the 
perception of concurrent vowels. Perception & Psychophysics 45, 529–536. 

SUNDBERG, J. 1987. The Science of the Singing Voice. Northern Illinois University 
Press. 

SUNDBERG, J. 2001. Level and center frequency of the singer´s formant. Journal of 
Voice 15, 176–186. 

SZÉKELY, G. J., RIZZO, M. L. AND BAKIROV, N. K. 2007. Measuring and testing 
dependence by correlation of distances. The Annals of Statistics 35, 2769–
2794. 

TANAKA, A. 2000. Musical performance practice on sensor-based instruments. In 
Trends in Gestural Control of Music, pp. 389–405. Paris, France: IRCAM 
Centre Pompidou. 

TANAKA, A. AND KNAPP, R. B. 2002. Multimodal interaction in music using the 
electromyogram and relative position sensing. In Proceedings of the 2nd 
international conference on New Interfaces for Musical Expression, pp. 1–6. 
Dublin, Ireland. 

TANDON, A., AHMAD, M. O. AND SWAMY, M. N. S. 2004. An efficient, low-
complexity, normalized LMS algorithm for echo cancellation. In Circuits and 
Systems, 2004. NEWCAS 2004. The 2nd Annual IEEE Northeast Workshop 
on, pp. 161–164. 

TENENBAUM, J. B., SILVA, V. AND LANGFORD, J. C. 2000. A global geometric 
framework for nonlinear dimensionality reduction. Science 290, 2319. 

THOMAS, S. P. AND POLLIO, H. R. 2004. Listening to Patients: A Phenomenological 
Approach to Nursing Research and Practice. 1st Edition. Springer Publishing 
Company. 

TOGNERI, R., ALDER, M. D. AND ATTIKIOUZEL, Y. 1992. Dimension and structure of 
the speech space. IEEE Proceedings I (Communications, Speech and Vision) 
139, 123–127. 

TOMPKINS, D. 2011. How to Wreck a Nice Beach: The Vocoder from World War II to 
Hip-Hop, The Machine Speaks. Stop Smiling Books. 

TRAUNMÜLLER, H. 1990. Analytical expressions for the tonotopic sensory scale. The 
Journal of the Acoustical Society of America 88, 97–100. 

TRUEMAN, D., COOK, P. R., SMALLWOOD, S. AND WANG, G. 2006. PLOrk: the 
Princeton laptop orchestra, year 1. In Proceedings of the 2006 International 
Computer Music Conference, pp. 443–450. New Orleans, US. 

TURETSKY, R. J. AND ELLIS, D. P. W. 2003. Ground-truth transcriptions of real music 
from force-aligned MIDI syntheses. In Proceedings of the 4th international 
conference on Music Information Retrieval. Baltimore, US. 



 

 239 

USHER, J. 2006. Extraction and removal of percussive sounds from musical 
recordings. In Proceedings of the 9th international conference on Digital 
Audio Effects. Montreal, Canada. 

VERTEGAAL, R. AND UNGVARY, T. 1995. The sentograph: input devices and the 
communication of bodily expression. In Proceedings of the 1995 
International Computer Music Conference, pp. 253–256. Banff, Canada. 

VINET, H., HERRERA, P. AND PACHET, F. 2002. The CUIDADO Project. In 
Proceedings of 3rd international conference on Music Information Retrieval. 
Paris, France. 

VOGT, F., MCCAIG, G., ALI, M. A. AND FELS, S. 2002. Tongue ŉ’ groove: an 
ultrasound based music controller. In Proceedings of the 2nd international 
conference on New Interfaces for Musical Expression, pp. 1–5. Dublin, 
Ireland. 

WAIBEL, A. AND LEE, K.-F. 1990. Readings in Speech Recognition. Morgan 
Kaufmann. 

WAISVISZ, M. 1985. The hands: a set of remote MIDI-controllers. In Proceedings of 
the 1985 International Computer Music Conference. Burnaby, Canada. 

WANDERLEY, M. M. 2001. ‘Performer–instrument interaction: applications to 
gestural control of sound synthesis’. Ph.D. Thesis, University Paris. 

WANDERLEY, M. M. AND DEPALLE, P. 2001. Gesturally-controlled digital audio 
effects. In Proceedings of the 4th international conference on Digital Audio 
Effects. 

WANDERLEY, M. M. AND DEPALLE, P. 2004. Gestural control of sound synthesis. 
Proceedings of the IEEE 92, 632–644. 

WANDERLEY, M. M. AND ORIO, N. 2002. Evaluation of input devices for musical 
expression: borrowing tools from HCI. Computer Music Journal 26, 62–76. 

WANDERLEY, M. M., SCHNELL, N. AND ROVAN, J. B. 1998. Escher - modeling and 
performing composed instruments in real-time. In Proceedings of the IEEE 
International Conference on Systems, Man, and Cyberneticsvol. 2, pp. 1080 
–1084. 

WANG, G., ESSL, G. AND PENTTINEN, H. 2008. Do mobile phones dream of electric 
orchestras? In Proceedings of the 2008 International Computer Music 
Conference. Belfast, North Ireland. 

WESSEL, D. 1979. Timbre space as a musical control structure. Computer Music 
Journal 3, 45–52. 

WESSEL, D. 1991. Instruments that learn, refined controllers, and source model 
loudspeakers. Computer Music Journal 15, 82. 

WESSEL, D. AND WRIGHT, M. 2001. Problems and prospects for intimate musical 
control of computers. In Proceedings of ACM Computer-Human Interaction 
Workshop on New Interfaces for Musical Expression. Seattle, USA. 



 

 240 

WIERENGA, R. 2012. A new keyboard-based, sensor-augmented instrument for live 
performance. In Proceedings of the 12th international conference on New 
Interfaces for Musical Expression. Ann Arbor, USA. 

WIFFEN, P. 1988. Keyboards are for wimps. Keyboard Magazine, 117. 

WILSON, S., GUREVICH, M., VERPLANK, B. AND STANG, P. 2003. Microcontrollers in 
music HCI instruction: reflections on our switch to the Atmel AVR platform. 
In Proceedings of the 3rd international conference on New Interfaces for 
Musical Expression, pp. 24–29. 

WISHART, T. 1996. On Sonic Art. Harwood Academic Publishers. 

WRIGHT, M. AND FREED, A. 1997. Open sound control: a new protocol for 
communicating with sound synthesizers. In Proceedings of the 1997 
International Computer Music Conference. Thessaloniki, Greece. 

WYSE, L. 2003. Free music and the discipline of sound. Organised Sound 8, 237–
247. 

WYSE, L. 2005. Generative sound models. In Multimedia Modeling, pp. 370–377. 

YANG, X., MILLAR, J. B. AND MACLEOD, I. 1996. On the sources of inter- and intra- 
speaker variability in the acoustic dynamics of speech. In PROCEEDINGS 
OF THE 4TH International Conference on Spoken Languagevol. 3, pp. 
1792–1795. Philadelphia, US. 

YAN, Q. AND VASEGHI, S. 2003. Analysis, modelling and synthesis of formants of 
British, American and Australian accents. In Proceedings of the 2003 IEEE 
International Conference on Acoustics, Speech, and Signal Processingvol. 1, 
pp. 712–715. Hong Kong. 

ZADEL, M. AND SCAVONE, G. 2006. Different strokes: a prototype software system 
for laptop performance and improvisation. In Proceedings of the 6th 
international conference on New Interfaces for Musical Expression, pp. 168–
171. Paris, France. 

ZAHORIK, P., BRUNGART, D. S. AND BRONKHORST, A. W. 2005. Auditory distance 
perception in humans: a summary of past and present research. Acta Acustica 
united with Acustica 91, 409–420. 

ZBYSZYŃSKI, M., ZICARELLI, D. AND COLLECCHIA, R. 2013. fzero~: fundamental 
estimation for Max 6. In Proceedings of the 2013 International Computer 
Music Conference. Perth, AU. 

ZUMBO, B. D. AND ZIMMERMAN, D. W. 1993. Is the selection of statistical methods 
governed by level of measurement? Canadian Psychology/Psychologie 
Canadienne 34, 390–400. 

ZWICKER, E. 1961. Subdivision of the audible frequency range into critical bands 
(frequenzgruppen). The Journal of the Acoustical Society of America 33, 248. 

 

  



 

 241 

Appendix A 
 

DMI Evaluation Detailed Results 
 

 
 

Table A.1: Detailed numerical results of the Section 4.5 validation including percentage of 

total Isomap components variance, sonic control obtainable parameter combinations %, timbre 

descriptor entries nearest neighbors average distance in D and I spaces, output parameters 

IDW interpolation difference with weights computed in the original and reduced sonic spaces, 

for the 2D and 3D Isomap lower dimensional spaces. 

 

2D 3D 2D 3D 2D 3D Full 2D 3D Full 2D 3D

1 81.30 88.12 66.20 99.95 0.004 0.008 0.042 0.127 0.097 0.066 0.199 0.148
2 97.34 98.19 70.68 99.00 0.004 0.005 0.016 0.285 0.253 0.178 0.387 0.322
3 94.36 95.74 50.31 82.81 0.003 0.003 0.022 0.222 0.205 0.179 0.328 0.299
4 99.87 99.93 38.80 89.48 0.000 0.000 0.000 0.195 0.181 0.136 0.189 0.141
5 79.53 85.72 57.79 92.85 0.004 0.008 0.039 0.275 0.236 0.175 0.293 0.241
6 94.16 95.94 95.08 99.81 0.014 0.015 0.024 0.165 0.147 0.107 0.164 0.155
7 69.69 83.44 87.81 99.90 0.012 0.021 0.031 0.068 0.055 0.045 0.130 0.115
8 96.02 97.30 67.11 94.93 0.003 0.004 0.015 0.197 0.176 0.136 0.351 0.318
9 96.89 98.49 80.09 99.85 0.005 0.006 0.012 0.194 0.186 0.156 0.384 0.280
10 97.57 98.31 46.88 93.27 0.002 0.003 0.027 0.169 0.153 0.126 0.162 0.150
11 96.74 97.62 70.62 96.75 0.004 0.004 0.025 0.222 0.218 0.177 0.256 0.249
12 78.75 89.17 100 100 0.030 0.035 0.053 0.117 0.109 0.094 0.176 0.222
13 70.60 78.82 48.23 98.37 0.004 0.010 0.054 0.234 0.189 0.121 0.360 0.302
14 60.97 66.70 68.17 99.95 0.004 0.009 0.099 0.116 0.090 0.083 0.198 0.221
15 94.99 97.13 25.26 89.58 0.002 0.002 0.031 0.227 0.227 0.097 0.924 0.909
16 90.45 93.05 97.14 100 0.016 0.019 0.055 0.106 0.087 0.064 0.138 0.081
17 79.76 83.28 79.16 100 0.006 0.016 0.057 0.135 0.076 0.068 0.244 0.235
18 80.83 84.34 94.97 100 0.011 0.014 0.084 0.154 0.139 0.140 0.270 0.151
19 48.36 56.57 56.03 86.01 0.004 0.010 0.174 0.149 0.128 0.118 0.543 0.084
20 81.71 84.26 94.22 100 0.009 0.015 0.055 0.184 0.183 0.169 0.376 0.229
21 92.93 94.71 28.06 56.56 0.001 0.003 0.014 0.246 0.237 0.221 0.331 0.184
22 98.65 99.00 34.07 77.58 0.002 0.002 0.001 0.181 0.169 0.136 0.068 0.057
23 84.55 91.16 70.50 96.70 0.008 0.008 0.016 0.154 0.146 0.124 0.272 0.240
24 87.65 92.39 100 100 0.038 0.052 0.054 0.172 0.110 0.094 0.306 0.258
25 97.38 98.14 79.30 99.42 0.006 0.006 0.003 0.165 0.161 0.149 0.096 0.096
26 90.32 93.91 87.04 99.63 0.007 0.006 0.019 0.096 0.094 0.076 0.236 0.249
27 67.28 83.02 70.68 99.54 0.004 0.005 0.037 0.174 0.149 0.114 0.385 0.201
28 99.69 99.84 59.79 84.66 0.004 0.003 0.001 0.066 0.067 0.068 0.050 0.027
29 80.97 92.84 58.94 100 0.004 0.011 0.023 0.165 0.134 0.082 0.281 0.219
30 99.69 99.84 59.79 84.66 0.004 0.003 0.001 0.066 0.067 0.068 0.050 0.027
31 42.59 60.40 74.31 83.33 0.008 0.013 0.015 0.170 0.135 0.114 0.328 0.399
32 13.70 20.27 54.29 70.48 0.009 0.010 0.004 0.123 0.094 0.063 0.325 0.333
33 61.79 62.60 43.18 75.45 0.000 0.000 3E-05 0.166 0.165 0.162 0.205 0.206
34 100 100 93.91 100 0.001 0.000 0.000 0.299 0.292 0.292 0.045 0.026
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D""""
Full

D*"""""
2D

D*"""""
3D

Du*"
2D

Du*"
3D 2D 3D

cfg"
2D

MSE"
2D

cfg"
3D

MSE"
3D 2D 3D 2D 3D 2D 3D

1 0.244 0.511 0.685 0.053 0.048 0.003 0.003 20*7 0.4 18*5 0.1 58.3 67.1 94.7 94.8 0.037 0.058
2 0.758 0.925 1.095 0.053 0.048 0.060 0.055 18*4 9.6 18*5 2.4 33.8 52.1 75.3 93.6 0.188 0.257
3 0.499 0.853 1.097 0.057 0.054 0.047 0.055 17*8 3.5 13*3 0.9 38.3 50.3 82.4 86.0 0.153 0.203
4 0.740 1.232 1.465 0.050 0.058 0.034 0.017 20*3 2k 8*4 394 30.3 47.9 57.1 82.7 3.072 6.125
5 0.825 0.979 1.264 0.054 0.046 0.013 0.014 18*6 0.8 14*7 0.2 47.4 55.8 88.8 94.3 0.050 0.067
6 0.746 0.892 1.030 0.056 0.052 0.028 0.022 12*7 0.8 9*6 0.1 49.6 64.2 91.3 97.9 0.053 0.055
7 0.833 0.955 1.092 0.055 0.047 0.019 0.024 19*6 0.9 18*6 0.2 55.2 63.7 93.8 94.4 0.055 0.084
8 0.652 1.204 1.332 0.058 0.048 0.064 0.056 9*6 11 13*6 2.6 38.8 49.0 80.7 92.8 0.181 0.240
9 0.508 0.837 0.855 0.057 0.047 0.067 0.048 19*7 6.3 18*5 0.9 47.3 58.0 91.2 96.2 0.124 0.162
10 0.709 1.160 1.515 0.055 0.050 0.045 0.073 17*4 4.3 11*7 1.4 20.5 47.2 47.9 93.9 0.193 0.336
11 0.553 1.159 1.350 0.060 0.051 0.100 0.064 15*6 25 11*7 4.7 23.9 43.0 65.6 88.0 0.391 0.434
12 0.385 1.192 1.576 0.067 0.061 0.039 0.000 10*6 270 15*4 127 62.4 69.6 96.0 91.2 1.163 1.299
13 0.234 0.612 0.739 0.051 0.072 0.003 0.002 20*7 140 15*6 18 56.3 68.3 92.2 89.2 1.106 1.156
14 0.316 0.653 0.835 0.053 0.049 0.008 0.008 19*7 49 17*6 6.9 53.3 64.9 89.9 96.0 0.515 0.630
15 0.470 1.384 1.402 0.062 0.048 0.131 0.072 14*6 274 18*6 74 31.3 41.5 87.3 78.5 1.241 2.121
16 0.315 0.524 0.633 0.061 0.052 0.028 0.028 18*6 326 11*5 69 57.7 69.1 91.4 99.2 1.135 1.628
17 0.386 0.574 1.095 0.061 0.049 0.017 0.052 9*8 56 18*3 17 62.9 59.9 90.9 95.9 0.595 1.034
18 0.473 0.712 0.754 0.060 0.054 0.054 0.034 10*6 211 14*7 22 49.8 64.1 89.1 96.7 0.701 0.666
19 0.617 1.357 1.168 0.053 0.056 0.013 0.011 20*7 86 16*5 11 49.3 57.5 91.9 94.7 0.828 0.871
20 0.199 0.596 0.741 0.055 0.052 0.013 0.024 17*6 92 18*4 25 54.9 59.0 94.3 94.4 0.513 0.708
21 1.668 2.177 2.285 0.054 0.048 0.061 0.112 20*6 138 14*7 26 31.4 33.0 86.2 60.2 1.209 1.946
22 1.038 1.559 1.755 0.052 0.067 0.032 0.014 20*5 4k 17*5 994 40.2 54.8 77.1 87.5 4.098 10.41
23 0.995 1.452 1.564 0.058 0.048 0.076 0.023 11*7 28 18*6 6.2 38.1 53.6 82.0 93.2 0.351 0.343
24 0.340 0.426 0.538 0.066 0.054 0.006 0.019 16*3 4.8 17*3 1.5 67.9 77.8 98.0 96.4 0.117 0.126
25 1.327 1.647 1.865 0.060 0.055 0.041 0.051 13*5 19k 16*5 5k 52.5 66.8 93.3 96.8 11.75 19.09
26 0.318 1.100 1.174 0.080 0.056 0.209 0.085 17*7 13 13*7 4.9 33.7 47.8 91.5 94.4 0.157 0.327
27 0.335 1.035 1.165 0.063 0.052 0.083 0.092 18*5 194 16*4 51 42.0 49.5 87.7 88.3 0.760 0.704
28 1.470 1.482 1.483 0.060 0.055 0.056 0.027 11*8 ∞ 16*4 ∞ 50.0 50.3 100 81.0 52.43 104.5
29 0.297 0.490 0.849 0.050 0.048 0.003 0.002 19*7 0.2 15*0 0 64.3 68.9 93.2 94.2 0.031 0.053
30 1.470 1.482 1.483 0.060 0.055 0.056 0.027 11*8 ∞ 16*4 ∞ 50.0 50.3 100 81.0 52.43 104.5
31 0.612 1.865 2.189 0.064 0.050 0.206 0.140 17*6 0 5*0 0 38.2 36.8 71.5 71.5 0.008 0.017
32 1.028 1.803 1.982 0.083 0.050 0.696 0.712 7*0 0.01 5*0 0.02 30.5 17.5 74.3 54.3 0.001 0.004
33 1.448 9.108 9.479 0.068 0.058 0.095 0.050 6*4 ∞ 18*4 ∞ 16.8 7.7 70.5 17.3 930.2 1273
34 1.715 1.722 1.838 0.072 0.048 0.117 0.034 19*6 58k 18*3 8k 53.4 55.3 98.8 91.8 11.81 21.01
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Table A.2: Detailed numerical results of the Section 5.3 validation including covariance λ, 

redistribution algorithm error %, ANN configuration and MSE, obtainable parameter 

combinations %, and estimation sonic response linearity for the 2D and 3D sonic spaces cases. 
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irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

1 70 80 77 73 77 76 0.09 0.21 0.29 0.09 0.2 0.28 3.34 2.29 2.59 3.15 3.05 2.54
2 <1 94 89 <1 96 95 0.05 0.19 0.28 0.05 0.18 0.28 1222 9.94 67 1454 9.18 115
3 56 77 74 62 81 79 0.08 0.2 0.3 0.07 0.2 0.29 31.6 9.65 19.2 25.3 8.43 15.6
4 61 63 59 60 70 71 0.08 0.2 0.3 0.08 0.2 0.29 9.84 7.01 7.96 9.9 6.19 7.38
5 73 78 79 72 82 83 0.06 0.14 0.21 0.06 0.13 0.21 11.7 8.33 11 16 10.4 14.2
6 96 97 97 99 100 100 0.09 0.19 0.25 0.09 0.18 0.23 29.6 20.8 28.6 27 16.2 26.3
7 97 95 94 98 96 95 0.08 0.15 0.18 0.07 0.14 0.16 13.1 11.1 12.9 12 14.4 11.6
8 4 92 87 4 95 94 0.07 0.19 0.27 0.07 0.19 0.27 420 13 86.2 405 15.2 78
9 79 90 92 87 95 97 0.09 0.2 0.28 0.09 0.2 0.27 15.2 10.9 14.1 12.9 9.23 11.6
10 81 61 54 93 95 94 0.07 0.18 0.24 0.07 0.17 0.24 22 37.2 24.5 19.7 14.1 18.1
11 87 78 71 97 95 95 0.06 0.16 0.23 0.05 0.16 0.23 211 53.4 232 43.7 36 43.3
12 100 98 97 100 98 97 0.07 0.15 0.21 0.07 0.15 0.21 102 75.4 101 77 70 76.7
13 5 55 55 5 55 55 0.08 0.21 0.31 0.08 0.21 0.3 35 2.22 8.75 38.8 2.43 10.3
14 73 78 78 76 80 82 0.08 0.18 0.25 0.08 0.18 0.25 8.74 5.97 7.45 8.09 7.83 7.1
15 66 65 58 61 65 63 0.09 0.2 0.3 0.09 0.2 0.29 3.8 4.28 3.36 4.4 4.81 3.69
16 99 97 96 100 100 100 0.08 0.16 0.19 0.08 0.15 0.18 28.8 24 27.7 18.2 19.1 17.2
17 96 98 97 98 98 98 0.07 0.16 0.22 0.07 0.15 0.17 22.2 13.7 21.2 22.3 18.4 22.1
18 8 97 97 8 100 99 0.08 0.2 0.27 0.08 0.2 0.27 195 20.2 85.1 206 16.6 86.5
19 74 82 79 77 84 83 0.08 0.18 0.27 0.08 0.19 0.27 6.9 5.69 5.72 7.21 5.35 6.4
20 1 98 96 1 98 98 0.02 0.19 0.28 0.02 0.19 0.27 4064 14.6 255 3642 13.7 314
21 <1 4 72 <1 4 67 0 0.12 0.27 0 0.12 0.28 0 165 0 0 290 0
22 56 66 66 60 68 69 0.08 0.19 0.29 0.08 0.19 0.29 7.87 6.24 6.02 6.72 8.8 5.34
23 5 92 84 2 97 94 0.02 0.18 0.28 0.02 0.17 0.27 904 19.8 125 2087 15.4 262
24 100 100 100 100 99 100 0.09 0.17 0.21 0.08 0.16 0.19 58.1 35.8 57.7 43.4 25 42.4
25 99 99 96 99 99 99 0.08 0.16 0.21 0.07 0.16 0.21 32 33.8 31.6 28.1 24.3 27.5
26 100 94 93 100 100 99 0.09 0.18 0.23 0.08 0.16 0.19 43.1 79 42.8 33.1 55.3 32.6
27 <1 94 97 <1 100 99 0 0.17 0.29 0 0.17 0.28 0 36.2 371 0 24.8 0
28 94 97 97 91 88 88 0.09 0.17 0.22 0.08 0.17 0.23 45.7 40.4 45.2 44.3 46.1 43.6
29 62 73 76 62 70 73 0.09 0.2 0.29 0.09 0.2 0.28 3.13 2.17 2.37 3.24 3.62 2.54
30 94 97 97 91 88 88 0.09 0.17 0.22 0.08 0.17 0.23 45.7 40.4 45.2 44.3 46.1 43.6
31 96 83 80 96 85 81 0.08 0.17 0.23 0.08 0.17 0.22 61 70.5 62.3 61.3 64.9 63.2
32 85 83 73 87 67 54 0.04 0.1 0.18 0.05 0.11 0.17 193 152 205 142 189 113
33 90 66 60 70 44 30 0.08 0.18 0.25 0.08 0.18 0.25 181 252 181 181 431 253
34 92 97 98 95 98 98 0.1 0.2 0.28 0.1 0.2 0.28 9.2 8.48 8.69 9.82 8.51 9.51
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Table A.3: Detailed numerical results of the Section 5.3 validation including percentage of 

obtained parameters, parameters continuity, and sonic space coverage spread for different 

values of irad. Results are derived from the emulation of the GC output fed to the ANN-based 

mapping function, for the 2D and 3D cases. 
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irad%%
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irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

irad%%
0.11

irad%%
0.25

irad%%
0.4

1 66 82 84 75 79 80 0.09 0.2 0.29 0.08 0.19 0.28 4.61 2.61 2.52 2.8 2.54 2.28
2 0.5 96 98 0.5 98 99 0.04 0.16 0.26 0.03 0.14 0.23 992 11.1 106 1183 11.4 123
3 61 84 91 55 85 89 0.06 0.19 0.29 0.05 0.17 0.28 7.21 5.25 5.65 10.7 7.15 7.76
4 55 76 82 62 75 80 0.08 0.19 0.28 0.06 0.18 0.27 6.31 4.25 5 7.87 6.63 5.72
5 84 95 97 80 91 95 0.06 0.14 0.22 0.05 0.13 0.21 7.28 4.71 6.48 10.7 6.41 9.35
6 95 100 100 99 100 100 0.09 0.18 0.24 0.06 0.16 0.22 33.9 17.7 32.7 26.7 13.9 24.8
7 98 100 100 99 100 100 0.07 0.15 0.19 0.06 0.14 0.17 15.5 5.93 14.2 11.5 9.97 11.1
8 4 98 100 4 99 99 0.05 0.17 0.26 0.04 0.15 0.24 330 10.5 78.9 312 11.3 77.3
9 73 94 99 86 98 99 0.08 0.19 0.26 0.05 0.16 0.24 18.3 12.1 16 13.1 10.6 12.3
10 90 99 100 95 99 99 0.06 0.17 0.24 0.05 0.15 0.23 12.1 8.33 11.3 13.7 9.19 12.5
11 95 99 100 96 99 100 0.05 0.16 0.24 0.05 0.14 0.22 29.9 25.1 28.7 28.1 21.5 27.8
12 100 100 100 100 100 100 0.06 0.15 0.2 0.05 0.13 0.18 108 58.5 108 119 35 119
13 5.3 55 57 5.5 55 58 0.08 0.21 0.31 0.05 0.2 0.29 43.7 2.36 5.81 28.4 2.68 7.06
14 78 89 94 78 85 91 0.07 0.18 0.25 0.07 0.17 0.25 5.3 3.93 4.31 8.36 6.79 6.53
15 57 82 85 61 76 78 0.07 0.19 0.29 0.05 0.18 0.27 4.95 2.67 3.81 5.38 3.37 4.28
16 99 100 100 100 100 100 0.07 0.15 0.19 0.05 0.14 0.18 33.6 15.1 33 20.2 15.1 19.4
17 95 100 100 99 100 100 0.06 0.16 0.22 0.06 0.14 0.17 22.7 8.02 21.5 19.3 11.5 18.3
18 8.3 100 100 8.3 100 100 0.05 0.18 0.26 0.05 0.16 0.24 241 19.8 99.5 284 18.7 108
19 60 92 95 74 90 93 0.07 0.19 0.27 0.06 0.18 0.26 8.4 4.18 6.69 7.94 4.74 6.14
20 0.7 96 100 0.7 100 100 0.02 0.18 0.28 0.01 0.15 0.25 2415 15.4 225 2740 13.8 123
21 <1 4 82 <1 4 82 0 0.1 0.28 0 0.1 0.26 0 89.6 106 0 111 0
22 57 75 83 56 72 79 0.07 0.19 0.29 0.06 0.17 0.28 6.12 4.51 4.57 9.07 8.13 6.01
23 5 98 100 5 98 100 0.03 0.17 0.27 0.04 0.14 0.25 375 16.2 87.9 787 18.5 173
24 100 100 100 100 100 100 0.08 0.17 0.21 0.06 0.15 0.19 69.2 29.4 68.1 38.9 20.3 38.2
25 96 100 100 99 100 100 0.07 0.15 0.2 0.05 0.14 0.19 42.3 20.6 41.1 35.3 25.8 34.5
26 100 100 100 100 100 100 0.07 0.16 0.22 0.05 0.15 0.21 43.4 26.7 42.6 60.1 28.8 58.7
27 0.2 97 100 0.2 99 100 0 0.14 0.26 0 0.12 0.23 0 21.6 63.8 0 19.5 495
28 83 100 100 100 100 100 0.08 0.17 0.22 0.07 0.17 0.22 66.3 29.1 62 49 19 48.1
29 57 76 80 61 71 76 0.09 0.2 0.3 0.09 0.2 0.28 3.95 2.04 2.79 3.9 2.86 3.03
30 83 100 100 100 100 100 0.08 0.17 0.22 0.07 0.17 0.22 66.3 29.1 62 49 19 48.1
31 99 100 100 98 100 100 0.06 0.16 0.23 0.05 0.14 0.21 52.2 28.2 51.1 50.7 28.7 44.5
32 99 100 100 100 100 100 0.05 0.13 0.21 0.04 0.11 0.19 44.2 39.8 43.8 42 35.1 41.6
33 98 100 100 100 100 100 0.07 0.16 0.21 0.05 0.14 0.19 65.1 35.3 64.4 63.6 36.5 62.7
34 73 94 99 90 98 100 0.08 0.18 0.27 0.05 0.16 0.25 17.5 10.6 15.7 16.2 19.4 15.3
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Table A.4: Detailed numerical results of the Section 5.3 validation including percentage of 

obtained parameters, parameters continuity, and sonic space coverage spread for different 

values of irad. Results are derived from the emulation of the GC output directly projected in 

Du
*, for the 2D and 3D cases. 


	Fasciani_PhD_Thesis1
	Fasciani_PhD_Thesis2
	Fasciani_PhD_Thesis3
	Fasciani_PhD_Thesis4
	Fasciani_PhD_Thesis5
	Fasciani_PhD_Thesis6
	Fasciani_PhD_Thesis7
	Fasciani_PhD_Thesis8
	Fasciani_PhD_Thesis9
	Fasciani_PhD_Thesis10
	Fasciani_PhD_Thesis11

